Most cited article - PubMed ID 18062190
Intracellular colonization of Rhododendron and Vaccinium roots by Cenococcum geophilum, Geomyces pannorum and Meliniomyces variabilis
Despite decades of intensive research (especially from 1970s to 1990s), the ericoid mycorrhizal (ErM) hair root is still largely terra incognita and this simplified guide is intended to revive and promote the study of its mycobiota. Basic theoretical knowledge on the ErM symbiosis is summarized, followed by practical advices on Ericaceae root sample collection and handling, microscopic observations and photo-documentation of root fungal colonization, mycobiont isolation, maintenance and identification and resynthesis experiments with ericoid plants. The necessity of a proper selection of the root material and its surface sterilization prior to mycobiont isolation is stressed, together with the need of including suitable control treatments in inoculation experiments. The culture-dependent approach employing plating of single short (~ 2 mm) hair root segments on nutrient media is substantiated as a useful tool for characterization of Ericaceae root-associated fungal communities; it targets living mycelium and provides metabolically active cultures that can be used in physiological experiments and taxonomic studies, thus providing essential reference material for culture-independent approaches. On the other hand, it is stressed that not every mycobiont isolated from an ericoid hair root necessarily represent an ErM fungus. Likewise, not every intracellular hyphal coil formed in the Ericaceae rhizodermis necessarily represents the ErM symbiosis. Taxonomy of the most important ericoid mycobionts is updated, mutualism in the ErM symbiosis is briefly discussed from the mycobiont perspective, and some interesting lines of possible future research are highlighted.
- Keywords
- Culture-dependent approach, Ericaceae, Ericoid mycorrhizal fungal diversity, In vitro resynthesis, Isolate identification, Microscopy, Mycobiont isolation, Plating of surface-sterilized root segments,
- MeSH
- Ericaceae * MeSH
- Plant Roots MeSH
- Mycorrhizae * MeSH
- Plants MeSH
- Symbiosis MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Data mining for a phylogenetic study including the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae revealed nearly identical ITS sequences of the bryophilous Hyaloscypha hepaticicola suggesting they are conspecific. Additional genetic markers and a broader taxonomic sampling furthermore suggested that the sexual Hyaloscypha and the asexual Meliniomyces may be congeneric. In order to further elucidate these issues, type strains of all species traditionally treated as members of the Rhizoscyphus ericae aggregate (REA) and related taxa were subjected to phylogenetic analyses based on ITS, nrLSU, mtSSU, and rpb2 markers to produce comparable datasets while an in vitro re-synthesis experiment was conducted to examine the root-symbiotic potential of H. hepaticicola in the Ericaceae. Phylogenetic evidence demonstrates that sterile root-associated Meliniomyces, sexual Hyaloscypha and Rhizoscyphus, based on R. ericae, are indeed congeneric. To this monophylum also belongs the phialidic dematiaceous hyphomycetes Cadophora finlandica and Chloridium paucisporum. We provide a taxonomic revision of the REA; Meliniomyces and Rhizoscyphus are reduced to synonymy under Hyaloscypha. Pseudaegerita, typified by P. corticalis, an asexual morph of H. spiralis which is a core member of Hyaloscypha, is also transferred to the synonymy of the latter genus. Hyaloscypha melinii is introduced as a new root-symbiotic species from Central Europe. Cadophora finlandica and C. paucisporum are confirmed conspecific, and four new combinations in Hyaloscypha are proposed. Based on phylogenetic analyses, some sexually reproducing species can be attributed to their asexual counterparts for the first time whereas the majority is so far known only in the sexual or asexual state. Hyaloscypha bicolor sporulating in vitro is reported for the first time. Surprisingly, the mycological and mycorrhizal sides of the same coin have never been formally associated, mainly because the sexual and asexual morphs of these fungi have been studied in isolation by different research communities. Evaluating all these aspects allowed us to stabilize the taxonomy of a widespread and ecologically well-studied group of root-associated fungi and to link their various life-styles including saprobes, bryophilous fungi, root endophytes as well as fungi forming ericoid mycorrhizae and ectomycorrhizae.
- Keywords
- Ectomycorrhiza, Ericoid mycorrhiza, Hyaloscypha bicolor (Hambl. & Sigler) Vohník, Fehrer & Réblová, Hyaloscypha finlandica (C.J.K. Wang & H.E. Wilcox) Vohník, Fehrer & Réblová, Hyaloscypha hepaticicola, Hyaloscypha melinii Vohník, Fehrer & Réblová, Hyaloscypha variabilis (Hambl. & Sigler) Vohník, Fehrer & Réblová, Hyaloscypha vraolstadiae (Hambl. & Sigler) Vohník, Fehrer & Réblová, Hymenoscyphus ericae, Meliniomyces, Molecular systematics, Mycorrhizal synthesis, Pezoloma ericae, Pseudaegerita, Sexual-asexual connection,
- Publication type
- Journal Article MeSH
Ericoid mycorrhiza is arguably the least investigated mycorrhizal type, particularly when related to the number of potential hosts and the ecosystems they inhabit. Little is known about the global distribution of ericoid mycorrhizal (ErM) fungi, and this holds true even for the prominent ErM mycobiont Rhizoscyphus ericae. Earlier studies suggested R. ericae might be low in abundance or absent in the roots of Southern Hemisphere's Ericaceae, and our previous investigations in two Argentine Patagonian forests supported this view. Here, we revisited the formerly investigated area, albeit at a higher altitude, and screened fungi inhabiting hair roots of Gaultheria caespitosa and Gaultheria pumila at a treeless alpine site using the same methods as previously. We obtained 234 isolates, most of them belonging to Ascomycota. In contrast to previous findings, however, among 37 detected operational taxonomic units (OTUs), OTU 1 (=R. ericae s. str.) comprised the highest number of isolates (87, ∼37 %). Most of the OTUs and isolates belonged to the Helotiales, and 82.5 % of isolates belonged to OTUs shared between both Gaultheria species. At the alpine site, ericoid mycorrhizal fungi dominated, followed by dark septate endophytes and aquatic hyphomycetes probably acting as root endophytes. Our results suggest that the distribution of R. ericae is influenced, among others, by factors related to altitude such as soil type and presence/absence and type of the neighboring vegetation. Our study is the first report on R. ericae colonizing Ericaceae roots in the Southern Hemisphere and extends the known range of this prominent ErM species to NW Patagonia.
- Keywords
- Ericaceae, Ericoid mycorrhiza, Global distribution, Hymenoscyphus ericae, Pezoloma ericae, Southern Hemisphere,
- MeSH
- Ericaceae microbiology MeSH
- Phylogeny MeSH
- Glomeromycota classification genetics isolation & purification MeSH
- Plant Roots microbiology MeSH
- Mycorrhizae physiology MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Argentina MeSH
The Sebacinales are a monophyletic group of ubiquitous hymenomycetous mycobionts which form ericoid and orchid mycorrhizae, ecto- and ectendomycorrhizae, and nonspecific root endophytic associations with a wide spectrum of plants. However, due to the complete lack of fungal isolates derived from Ericaceae roots, the Sebacinales ericoid mycorrhizal (ErM) potential has not yet been tested experimentally. Here, we report for the first time isolation of a serendipitoid (formerly Sebacinales Group B) mycobiont from Ericaceae which survived in pure culture for several years. This allowed us to test its ability to form ericoid mycorrhizae with an Ericaceae host in vitro, to describe its development and colonization pattern in host roots over time, and to compare its performance with typical ErM fungi and other serendipitoids derived from non-Ericaceae hosts. Out of ten serendipitoid isolates tested, eight intracellularly colonized Vaccinium hair roots, but only the Ericaceae-derived isolate repeatedly formed typical ericoid mycorrhiza morphologically identical to ericoid mycorrhiza commonly found in naturally colonized Ericaceae, but yet different from ericoid mycorrhiza formed in vitro by the prominent ascomycetous ErM fungus Rhizoscyphus ericae. One Orchidaceae-derived isolate repeatedly formed abundant hyaline intracellular microsclerotia morphologically identical to those occasionally found in naturally colonized Ericaceae, and an isolate of Serendipita (= Piriformospora) indica produced abundant intracellular chlamydospores typical of this species. Our results confirm for the first time experimentally that some Sebacinales can form ericoid mycorrhiza, point to their broad endophytic potential in Ericaceae hosts, and suggest possible ericoid mycorrhizal specificity in Serendipitaceae.
- Keywords
- Endophytes, Ericaceae, Ericoid mycorrhiza, In vitro re-synthesis, Sebacinales, Serendipitaceae,
- MeSH
- Basidiomycota classification genetics physiology MeSH
- Ericaceae microbiology MeSH
- Phylogeny MeSH
- Plant Roots microbiology MeSH
- Mycorrhizae physiology MeSH
- Seedlings growth & development microbiology MeSH
- Publication type
- Journal Article MeSH
The unresolved ecophysiological significance of Dark Septate Endophytes (DSE) may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.--Acephala applanata species complex (PAC). We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch) with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM) and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs) with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE colonization without specific structures necessary for mycorrhizal nutrient transport. A. macrosclerotiorum forms ectomycorrhiza with conifers but not with broadleaves and probably does not form common mycorrhizal networks between conifers with Ericaceae.
- MeSH
- Endophytes MeSH
- Plant Roots microbiology MeSH
- Mycorrhizae physiology MeSH
- Picea microbiology MeSH
- Symbiosis * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
Ericaceae (the heath family) are widely distributed calcifuges inhabiting soils with inherently poor nutrient status. Ericaceae overcome nutrient limitation through symbiosis with ericoid mycorrhizal (ErM) fungi that mobilize nutrients complexed in recalcitrant organic matter. At present, recognized ErM fungi include a narrow taxonomic range within the Ascomycota, and the Sebacinales, basal Hymenomycetes with unclamped hyphae and imperforate parenthesomes. Here we describe a novel type of basidiomycetous ErM symbiosis, termed 'sheathed ericoid mycorrhiza', discovered in two habitats in mid-Norway as a co-dominant mycorrhizal symbiosis in Vaccinium spp. The basidiomycete forming sheathed ErM possesses clamped hyphae with perforate parenthesomes, produces 1- to 3-layer sheaths around terminal parts of hair roots and colonizes their rhizodermis intracellularly forming hyphal coils typical for ErM symbiosis. Two basidiomycetous isolates were obtained from sheathed ErM and molecular and phylogenetic tools were used to determine their identity; they were also examined for the ability to form sheathed ErM and lignocellulolytic potential. Surprisingly, ITS rDNA of both conspecific isolates failed to amplify with the most commonly used primer pairs, including ITS1 and ITS1F + ITS4. Phylogenetic analysis of nuclear LSU, SSU and 5.8S rDNA indicates that the basidiomycete occupies a long branch residing in the proximity of Trechisporales and Hymenochaetales, but lacks a clear sequence relationship (>90% similarity) to fungi currently placed in these orders. The basidiomycete formed the characteristic sheathed ErM symbiosis and enhanced growth of Vaccinium spp. in vitro, and degraded a recalcitrant aromatic substrate that was left unaltered by common ErM ascomycetes. Our findings provide coherent evidence that this hitherto undescribed basidiomycete forms a morphologically distinct ErM symbiosis that may occur at significant levels under natural conditions, yet remain undetected when subject to amplification by 'universal' primers. The lignocellulolytic assay suggests the basidiomycete may confer host adaptations distinct from those provisioned by the so far investigated ascomycetous ErM fungi.
- MeSH
- Basidiomycota genetics MeSH
- Ericaceae microbiology MeSH
- Phylogeny MeSH
- Plant Roots microbiology MeSH
- Mycorrhizae classification genetics MeSH
- Symbiosis genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Norway MeSH
This study aimed to elucidate the relationship between ericaceous understorey shrubs and the diversity and abundance of ectomycorrhizal fungi (EcMF) associated with the invasive Pinus strobus and native Pinus sylvestris. Seedlings of both pines were grown in mesocosms and subjected to three treatments simulating different forest microhabitats: (a) grown in isolation and grown with (b) Vaccinium myrtillus or (c) Vaccinium vitis-idaea. Ericaceous plants did not act as a species pool of pine mycobionts and inhibited the ability of the potentially shared species Meliniomyces bicolor to form ectomycorrhizae. Similarly, Ericaceae significantly reduced the formation of Thelephora terrestris ectomycorrhizae in P. sylvestris. EcMF species composition in the mesocosms was strongly affected by both the host species and the presence of an ericaceous neighbour. When grown in isolation, P. strobus root tips were predominantly colonised by Wilcoxina mikolae, whereas those of P. sylvestris were more commonly colonised by Suillus and Rhizopogon spp. Interestingly, these differences were less evident (Suillus + Rhizopogon spp.) or absent (W. mikolae) when the pines were grown with Ericaceae. P. strobus exclusively associated with Rhizopogon salebrosus s.l., suggesting the presence of host specificity at the intrageneric level. Ericaceous plants had a positive effect on colonisation of P. strobus root tips by R. salebrosus s.l. This study demonstrates that the interaction of selective factors such as host species and presence of ericaceous plants may affect the realised niche of the ectomycorrhizal fungi.
- MeSH
- Biodiversity * MeSH
- Pinus sylvestris growth & development microbiology physiology MeSH
- Pinus growth & development microbiology MeSH
- Phylogeny MeSH
- Host Specificity MeSH
- Fungi classification genetics growth & development isolation & purification MeSH
- Molecular Sequence Data MeSH
- Mycorrhizae classification genetics growth & development isolation & purification MeSH
- Seedlings MeSH
- Vaccinium growth & development microbiology MeSH
- Introduced Species * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Common occurrence of testate amoebae (TA) in the rhizosphere of mycorrhizal plants indicates existence of yet undocumented ecological interactions, involving three distinct groups of organisms: soil protists, mycorrhizal fungi, and their host plants. This tripartite relationship was to date investigated only to a limited extent, despite its probable importance for processes taking place in the mycorrhizosphere. In this study, we (1) explored spectra of different TA genera naturally associated with the rhizoplane of three autochthonous European Rhododendron species, (2) screened natural fungal colonization of the TA shells occupying the rhizoplane of selected rhododendrons, and (3) carried out two in vitro experiments addressing the question whether TA shells may serve as a nutrient source for ericoid mycorrhizal fungi (ErMF) and dark septate endophytes (DSE). Our field observations indicated that TA regularly associated with the rhizoplane of all screened rhododendrons and that ErMF and/or DSE associated with their roots possibly exploited the TA shells as a nutrient source. We were unable to detect any major differences among the TA spectra from the rhizoplanes with respect to the three Rhododendron species. The spectra were dominated by Diplochlamys, Centropyxis, Cyclopyxis, Euglypha, Trinema, and Assulina. Positive, neutral, and negative associations were found for various TA genera x Rhododendron species combinations. The highest fungal colonization was observed in Centropyxidae and Trigonopyxidae, reaching up to 45% of the shells in the case of Trigonopyxis. In the in vitro experiments, both ErMF Rhizoscyphus ericae and DSE Phialocephala fortinii regularly colonized TA shells, utilizing them as a source of nutrients. We hypothesize a complex relationship between ErMF-DSE and TA. If corroborated, it would represent an interesting nutrient loop in the mycorrhizosphere of ericaceous plants.
- MeSH
- Amoeba * classification isolation & purification microbiology MeSH
- Ascomycota * classification growth & development isolation & purification metabolism MeSH
- Ecosystem MeSH
- Ericaceae * classification growth & development microbiology parasitology MeSH
- Plant Roots * microbiology parasitology MeSH
- Mycorrhizae * MeSH
- Soil parasitology MeSH
- Soil Microbiology * MeSH
- Rhododendron classification microbiology parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Soil MeSH