Nejvíce citovaný článek - PubMed ID 18315537
Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event
BACKGROUND: Plant transformation via Agrobacterium tumefaciens is characterized by integration of commonly low number of T-DNAs at random positions in the genome. When integrated into an active gene region, promoterless reporter genes placed near the T-DNA border sequence are frequently transcribed and even translated to reporter proteins, which is the principle of promoter- and gene-trap lines. RESULTS: Here we show that even internal promotorless regions of T-DNAs are often transcribed. Such spontaneous transcription was observed in the majority of independently transformed tobacco BY-2 lines (over 65%) and it could effectively induce silencing if an inverted repeat was present within the T-DNA. We documented that the transcription often occurred in both directions. It was not directly connected with any regulatory elements present within the T-DNAs and at least some of the transcripts were initiated outside of the T-DNA. The likeliness of this read-through transcription seemed to increase in lines with higher T-DNA copy number. Splicing and presence of a polyA tail in the transcripts indicated involvement of Pol II, but surprisingly, the transcription was able to run across two transcription terminators present within the T-DNA. Such pervasive transcription was observed with three different T-DNAs in BY-2 cells and with lower frequency was also detected in Arabidopsis thaliana. CONCLUSIONS: Our results demonstrate unexpected pervasive read-through transcription of T-DNAs. We hypothesize that it was connected with a specific chromatin state of newly integrated DNA, possibly affected by the adjacent genomic region. Although this phenomenon can be easily overlooked, it can have significant consequences when working with highly sensitive systems like RNAi induction using an inverted repeat construct, so it should be generally considered when interpreting results obtained with the transgenic technology.
- Klíčová slova
- GFP, Inverted repeat, Promoterless, RNAi, Read-through transcription, T-DNA, Tobacco BY-2 cell line,
- MeSH
- Agrobacterium tumefaciens genetika MeSH
- Arabidopsis genetika MeSH
- buněčné linie MeSH
- DNA bakterií genetika MeSH
- genetická transkripce * MeSH
- geneticky modifikované rostliny MeSH
- messenger RNA genetika MeSH
- obrácené repetice genetika MeSH
- promotorové oblasti (genetika) genetika MeSH
- reportérové geny MeSH
- tabák genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
- messenger RNA MeSH
- T-DNA MeSH Prohlížeč
Transient 5-azacytidine treatment of leaf explants from potato plants with transcriptionally silenced transgenes allows de novo regeneration of plants with restored transgene expression at the whole plant level. Transgenes introduced into plant genomes frequently become silenced either at the transcriptional or the posttranscriptional level. Transcriptional silencing is usually associated with DNA methylation in the promoter region. Treatments with inhibitors of maintenance DNA methylation were previously shown to allow reactivation of transcriptionally silenced transgenes in single cells or tissues, but not at the whole plant level. Here we analyzed the effect of DNA methylation inhibitor 5-azacytidine (AzaC) on the expression of two silenced reporter genes encoding green fluorescent protein (GFP) and neomycin phosphotransferase (NPTII) in potato plants. Whereas no obvious reactivation was observed in AzaC-treated stem cuttings, transient treatment of leaf segments with 10 μM AzaC and subsequent de novo regeneration of shoots on the selective medium with kanamycin resulted in the production of whole plants with clearly reactivated expression of previously silenced transgenes. Reactivation of nptII expression was accompanied by a decrease in cytosine methylation in the promoter region of the gene. Using the plants with reactivated GFP expression, we found that re-silencing of this transgene can be accidentally triggered by de novo regeneration. Thus, testing the incidence of transgene silencing during de novo regeneration could be a suitable procedure for negative selection of transgenic lines (insertion events) which have an inclination to be silenced. Based on our analysis of non-specific inhibitory effects of AzaC on growth of potato shoots in vitro, we estimated that AzaC half-life in the culture media is approximately 2 days.
- Klíčová slova
- 5-Azacytidine, De novo regeneration, Methylation, Reactivation, TGS, Transgene silencing,
- MeSH
- azacytidin farmakologie MeSH
- geneticky modifikované rostliny účinky léků genetika metabolismus MeSH
- metylace DNA účinky léků genetika MeSH
- regulace genové exprese u rostlin účinky léků genetika MeSH
- Solanum tuberosum účinky léků genetika metabolismus MeSH
- transgeny účinky léků genetika MeSH
- umlčování genů MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- azacytidin MeSH
- zelené fluorescenční proteiny MeSH
BACKGROUND: DNA methylation plays a key role in development, contributes to genome stability, and may also respond to external factors supporting adaptation and evolution. To connect different types of stimuli with particular biological processes, identifying genome regions with altered 5-methylcytosine distribution at a genome-wide scale is important. Many researchers are using the simple, reliable, and relatively inexpensive Methylation Sensitive Amplified Polymorphism (MSAP) method that is particularly useful in studies of epigenetic variation. However, electrophoretic patterns produced by the method are rather difficult to interpret, particularly when MspI and HpaII isoschizomers are used because these enzymes are methylation-sensitive, and any C within the CCGG recognition motif can be methylated in plant DNA. RESULTS: Here, we evaluate MSAP patterns with respect to current knowledge of the enzyme activities and the level and distribution of 5-methylcytosine in plant and vertebrate genomes. We discuss potential caveats related to complex MSAP patterns and provide clues regarding how to interpret them. We further show that addition of combined HpaII + MspI digestion would assist in the interpretation of the most controversial MSAP pattern represented by the signal in the HpaII but not in the MspI profile. CONCLUSIONS: We recommend modification of the MSAP protocol that definitely discerns between putative hemimethylated mCCGG and internal CmCGG sites. We believe that our view and the simple improvement will assist in correct MSAP data interpretation.
- MeSH
- 5-methylcytosin chemie MeSH
- DNA rostlinná genetika MeSH
- epigeneze genetická MeSH
- metylace DNA * MeSH
- obratlovci genetika MeSH
- polymorfismus genetický * MeSH
- restrikční mapování MeSH
- tabák genetika MeSH
- techniky amplifikace nukleových kyselin metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5-methylcytosin MeSH
- DNA rostlinná MeSH
In plants, silencing is usually accompanied by DNA methylation and heterochromatic histone marks. We studied these epigenetic modifications in different epialleles of 35S promoter (P35S)-driven tobacco transgenes. In locus 1, the T-DNA was organized as an inverted repeat, and the residing neomycin phosphotransferase II reporter gene (P35S-nptII) was silenced at the posttranscriptional (PTGS) level. Transcriptionally silenced (TGS) epialleles were generated by trans-acting RNA signals in hybrids or in a callus culture. PTGS to TGS conversion in callus culture was accompanied by loss of the euchromatic H3K4me3 mark in the transcribed region of locus 1, but this change was not transmitted to the regenerated plants from these calli. In contrast, cytosine methylation that spread from the transcribed region into the promoter was maintained in regenerants. Also, the TGS epialleles generated by trans-acting siRNAs did not change their active histone modifications. Thus, both TGS and PTGS epialleles exhibit euchromatic (H3K4me3 and H3K9ac) histone modifications despite heavy DNA methylation in the promoter and transcribed region, respectively. However, in the TGS locus (271), abundant heterochromatic H3K9me2 marks and DNA methylation were present on P35S. Heterochromatic histone modifications are not automatically installed on transcriptionally silenced loci in tobacco, suggesting that repressive histone marks and cytosine methylation may be uncoupled. However, transient loss of euchromatic modifications may guide de novo DNA methylation leading to formation of stable repressed epialleles with recovered eukaryotic marks. Compilation of available data on epigenetic modification of inactivated P35S in different systems is provided.
- Klíčová slova
- DNA methylation, callus, dedifferentiation, histone modification, tobacco, transgene silencing,
- MeSH
- chromatin genetika metabolismus MeSH
- epigeneze genetická * MeSH
- geneticky modifikované rostliny genetika metabolismus MeSH
- histony genetika metabolismus MeSH
- kostní svalek metabolismus MeSH
- metylace DNA MeSH
- regulace genové exprese u rostlin MeSH
- tabák genetika metabolismus MeSH
- transgeny MeSH
- umlčování genů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- histony MeSH
Telomerase, an enzyme responsible for the maintenance of linear chromosome ends, is precisely regulated during plant development. In animals, involvement of the epigenetic state of the telomerase reverse transcriptase (TERT) gene in the complex regulation of telomerase activity has been reported. To reveal whether epigenetic mechanisms participate in the regulation of plant telomerase, the relationship between telomerase activity in tissues of Arabidopsis thaliana and DNA methylation and histone modifications in the A. thaliana TERT (AtTERT) upstream region was studied. As expected, a gradual decrease of telomerase activity during leaf maturation was observed. A different pattern with a more progressive loss of telomerase activity and AtTERT transcription during leaf development was revealed in MET1 gene-knockout mutants. Analysis of DNA methylation in the AtTERT upstream region showed low levels of methylated cytosines without notable differences between telomerase-positive and telomerase-negative wild-type tissues. Surprisingly, a high level of CG methylation was found in the AtTERT coding region, although this type of methylation is a characteristic attribute of constitutively expressed genes. Analysis of chromatin modifications in the AtTERT upstream region and in exon 5 showed increased loading of the H3K27me3 mark in the telomerase-negative mature leaf compared to telomerase-positive seedlings, whereas H3K4me3, H3K9Ac, and H3K9me2 were approximately at the same level. Consistently, the chromatin structure of the AtTERT gene was maintained. These results are discussed in the context of the general involvement of epigenetic mechanisms in the regulation of gene expression and with respect to similar studies performed in animal models.
- MeSH
- Arabidopsis enzymologie genetika růst a vývoj metabolismus MeSH
- epigeneze genetická MeSH
- euchromatin metabolismus MeSH
- exony MeSH
- histony metabolismus MeSH
- metylace MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- telomerasa genetika metabolismus MeSH
- umlčování genů * MeSH
- upregulace MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- euchromatin MeSH
- histony MeSH
- proteiny huseníčku MeSH
- telomerasa MeSH
It has been well established that trans-acting small RNAs guide promoter methylation leading to its inactivation and gene silencing at the transcriptional level (TGS). Here we addressed the question of the influence of the locus structure and epigenetic modifications of the target locus on its susceptibility for being paramutated by trans-acting small RNA molecules. Silencing was induced by crossing a 35S promoter silencer locus 271 with two different 35S-driven transgene loci, locus 2 containing a highly expressed single copy gene and locus 1 containing an inverted posttranscriptionally silenced (PTGS) repeat of this gene. Three generations of exposure to RNA signals from the 271 locus were required to complete silencing and methylation of the 35S promoter within locus 2. Segregating methylated locus 2 epialleles were obtained only from the third generation of hybrids, and this methylation was not correlated with silencing. Strikingly, only one generation was required for the PTGS locus 1 to acquire complete TGS and 35S promoter methylation. In this case, paramutated locus 1 epialleles bearing methylated and inactive 35S promoters segregated already from the first generation of hybrids. The results support the hypothesis that PTGS loci containing a palindrome structure and methylation in the coding region are more sensitive to paramutation by small RNAs and exhibit a strong tendency to formation of meiotically transmissible TGS epialleles. These features contrast with a non-methylated single copy transgenic locus that required several generations of contact with RNA silencing molecules to become imprinted in a stable epiallele.
- MeSH
- alely MeSH
- epigeneze genetická MeSH
- genetická transkripce MeSH
- geneticky modifikované rostliny genetika MeSH
- genomový imprinting MeSH
- malá interferující RNA genetika MeSH
- metylace DNA * MeSH
- promotorové oblasti (genetika) MeSH
- regulace genové exprese u rostlin * MeSH
- RNA interference MeSH
- tabák genetika MeSH
- transgeny genetika MeSH
- umlčovací elementy transkripční genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- malá interferující RNA MeSH
Developmental processes are closely connected to certain states of epigenetic information which, among others, rely on methylation of chromatin. S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are key cofactors of enzymes catalyzing DNA and histone methylation. To study the consequences of altered SAH/SAM levels on plant development we applied 9-(S)-(2,3-dihydroxypropyl)-adenine (DHPA), an inhibitor of SAH-hydrolase, on tobacco seeds during a short phase of germination period (6 days). The transient drug treatment induced: (1) dosage-dependent global DNA hypomethylation mitotically transmitted to adult plants; (2) pleiotropic developmental defects including decreased apical dominance, altered leaf and flower symmetry, flower whorl malformations and reduced fertility; (3) dramatic upregulation of floral organ identity genes NTDEF, NTGLO and NAG1 in leaves. We conclude that temporal SAH-hydrolase inhibition deregulated floral genes expression probably via chromatin methylation changes. The data further show that plants might be particularly sensitive to accurate setting of SAH/SAM levels during critical developmental periods.
- MeSH
- adenin analogy a deriváty toxicita MeSH
- adenosylhomocysteinasa antagonisté a inhibitory metabolismus MeSH
- DNA primery genetika MeSH
- epigeneze genetická účinky léků fyziologie MeSH
- klíčení účinky léků fyziologie MeSH
- komplementární DNA genetika MeSH
- květy anatomie a histologie fyziologie MeSH
- metylace DNA MeSH
- neparametrická statistika MeSH
- pyl fyziologie MeSH
- regulace genové exprese u rostlin účinky léků genetika fyziologie MeSH
- rostlinné proteiny metabolismus MeSH
- Southernův blotting MeSH
- tabák enzymologie fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 9-(2,3-dihydroxypropyl)adenine MeSH Prohlížeč
- adenin MeSH
- adenosylhomocysteinasa MeSH
- DNA primery MeSH
- GLO protein, Nicotiana tabacum MeSH Prohlížeč
- komplementární DNA MeSH
- rostlinné proteiny MeSH
BACKGROUND: Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. RESULTS: The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. CONCLUSION: The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with a visual marker for BY-2 transformation. The cloning procedure can be used not only for efficient reduction of expression heterogeneity of such transgenes, but also as a useful tool for studies of transgene expression and other purposes.
- MeSH
- buněčné klony MeSH
- buněčné kultury MeSH
- buněčné linie MeSH
- geneticky modifikované rostliny genetika MeSH
- regulace genové exprese u rostlin * MeSH
- tabák genetika MeSH
- technika přenosu genů * MeSH
- transformace genetická MeSH
- transgeny * MeSH
- zelené fluorescenční proteiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- zelené fluorescenční proteiny MeSH