Nejvíce citovaný článek - PubMed ID 18550538
The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem II assembly complex and is important for both the efficient assembly and repair of photosystem II in Synechocystis sp. PCC 6803
The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and suggest a possible role for PSI in PSII assembly. Special attention is paid to unresolved and controversial issues that could be addressed in future research.
Robust oxygenic photosynthesis requires a suite of accessory factors to ensure efficient assembly and repair of the oxygen-evolving photosystem two (PSII) complex. The highly conserved Ycf48 assembly factor binds to the newly synthesized D1 reaction center polypeptide and promotes the initial steps of PSII assembly, but its binding site is unclear. Here we use cryo-electron microscopy to determine the structure of a cyanobacterial PSII D1/D2 reaction center assembly complex with Ycf48 attached. Ycf48, a 7-bladed beta propeller, binds to the amino-acid residues of D1 that ultimately ligate the water-oxidising Mn4CaO5 cluster, thereby preventing the premature binding of Mn2+ and Ca2+ ions and protecting the site from damage. Interactions with D2 help explain how Ycf48 promotes assembly of the D1/D2 complex. Overall, our work provides valuable insights into the early stages of PSII assembly and the structural changes that create the binding site for the Mn4CaO5 cluster.
- MeSH
- elektronová kryomikroskopie MeSH
- fotosystém II (proteinový komplex) * metabolismus MeSH
- kyslík metabolismus MeSH
- mangan metabolismus MeSH
- sinice * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém II (proteinový komplex) * MeSH
- kyslík MeSH
- mangan MeSH
Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1mod and D2mod). RCII preparations isolated using either a His-tagged D2 or a FLAG-tagged PsbI subunit contained the previously described RCIIa and RCII* complexes that differ with respect to the presence of the Ycf39 assembly factor and high light-inducible proteins (Hlips) and a larger complex consisting of RCIIa bound to monomeric PSI. All RCII complexes contained the PSII subunits D1, D2, PsbI, PsbE, and PsbF and the assembly factors rubredoxin A and Ycf48, but we also detected PsbN, Slr1470, and the Slr0575 proteins, which all have plant homologs. The RCII preparations also contained prohibitins/stomatins (Phbs) of unknown function and FtsH protease subunits. RCII complexes were active in light-induced primary charge separation and bound chlorophylls (Chls), pheophytins, beta-carotenes, and heme. The isolated D1mod consisted of D1/PsbI/Ycf48 with some Ycf39 and Phb3, while D2mod contained D2/cytochrome b559 with co-purifying PsbY, Phb1, Phb3, FtsH2/FtsH3, CyanoP, and Slr1470. As stably bound, Chl was detected in D1mod but not D2mod, formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins. We suggest that Chl can be delivered to RCII from either monomeric Photosystem I or Ycf39/Hlips complexes.
- MeSH
- chlorofyl metabolismus MeSH
- feofytiny metabolismus MeSH
- fotosystém I (proteinový komplex) metabolismus MeSH
- fotosystém II (proteinový komplex) * metabolismus MeSH
- Synechocystis * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
- feofytiny MeSH
- fotosystém I (proteinový komplex) MeSH
- fotosystém II (proteinový komplex) * MeSH
Assembly of photosystem II (PSII), a water-splitting catalyst in chloroplasts and cyanobacteria, requires numerous auxiliary proteins which promote individual steps of this sequential process and transiently associate with one or more assembly intermediate complexes. In this study, we focussed on the role of a PSII-associated protein encoded by the ssl1498 gene in the cyanobacterium Synechocystis sp. PCC 6803. The N-terminal domain of this protein, which is here called Psb34, is very similar to the N-terminus of HliA/B proteins belonging to a family of high-light-inducible proteins (Hlips). Psb34 was identified in both dimeric and monomeric PSII, as well as in a PSII monomer lacking CP43 and containing Psb28. When FLAG-tagged, the protein is co-purified with these three complexes and with the PSII auxiliary proteins Psb27 and Psb28. However, the preparation also contained the oxygen-evolving enhancers PsbO and PsbV and lacked HliA/B proteins even when isolated from high-light-treated cells. The data suggest that Psb34 competes with HliA/B for the same binding site and that it is one of the components involved in the final conversion of late PSII assembly intermediates into functional PSII complexes, possibly keeping them free of Hlips. Unlike HliA/B, Psb34 does bind to the CP47 assembly module before its incorporation into PSII. Analysis of strains lacking Psb34 indicates that Psb34 mediates the optimal equilibrium of HliA/B binding among individual PSII assembly intermediates containing CP47, allowing Hlip-mediated photoprotection at all stages of PSII assembly.
- Klíčová slova
- CP47, High-light-inducible protein, Photosynthesis, Photosystem II,
- MeSH
- bakteriální proteiny metabolismus MeSH
- fotosyntéza MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- protein TNFSF14 metabolismus MeSH
- Synechocystis * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fotosystém II (proteinový komplex) MeSH
- protein TNFSF14 MeSH
High-light-inducible proteins (Hlips) are single-helix transmembrane proteins that are essential for the survival of cyanobacteria under stress conditions. The model cyanobacterium Synechocystis sp. PCC 6803 contains four Hlip isoforms (HliA-D) that associate with Photosystem II (PSII) during its assembly. HliC and HliD are known to form pigmented (hetero)dimers that associate with the newly synthesized PSII reaction center protein D1 in a configuration that allows thermal dissipation of excitation energy. Thus, it is expected that they photoprotect the early steps of PSII biogenesis. HliA and HliB, on the other hand, bind the PSII inner antenna protein CP47, but the mode of interaction and pigment binding have not been resolved. Here, we isolated His-tagged HliA and HliB from Synechocystis and show that these two very similar Hlips do not interact with each other as anticipated, rather they form HliAC and HliBC heterodimers. Both dimers bind Chl and β-carotene in a quenching conformation and associate with the CP47 assembly module as well as later PSII assembly intermediates containing CP47. In the absence of HliC, the cellular levels of HliA and HliB were reduced, and both bound atypically to HliD. We postulate a model in which HliAC-, HliBC-, and HliDC-dimers are the functional Hlip units in Synechocystis. The smallest Hlip, HliC, acts as a 'generalist' that prevents unspecific dimerization of PSII assembly intermediates, while the N-termini of 'specialists' (HliA, B or D) dictate interactions with proteins other than Hlips.
- Klíčová slova
- CP47, Chlorophyll, High-light-inducible proteins, Photosystem II, Synechocystis,
- MeSH
- bakteriální proteiny metabolismus MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- protein TNFSF14 metabolismus MeSH
- světlosběrné proteinové komplexy * metabolismus MeSH
- Synechocystis * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fotosystém II (proteinový komplex) MeSH
- protein TNFSF14 MeSH
- světlosběrné proteinové komplexy * MeSH
Cytochrome (Cyt) b559 is a key component of the photosystem II complex (PSII) that is essential for its proper functioning and assembly. Site-directed mutants of the model cyanobacterium Synechocystis sp. PCC6803 with mutated heme axial ligands of Cyt b559 have little PSII and are therefore unable to grow photoautotrophically. Here we describe two types of Synechocystis autotrophic transformants that retained the same mutations in Cyt b559 but are able to accumulate PSII and grow photoautotrophically. Whole-genome sequencing revealed that all of these autotrophic transformants carried a variable number of tandem repeats (from 5 to 15) of chromosomal segments containing the psbEFLJ operon. RNA-seq analysis showed greatly increased transcript levels of the psbEFLJ operon in these autotrophic transformants. Multiple copies of the psbEFLJ operon in these transformants were only maintained during autotrophic growth, while its copy numbers gradually decreased under photoheterotrophic conditions. Two-dimensional PAGE analysis of membrane proteins revealed a strong deficiency in PSII complexes in the Cyt b559 mutants that was reversed in the autotrophic transformants. These results illustrate how tandem gene amplification restores PSII accumulation and photoautotrophic growth in Cyt b559 mutants of cyanobacteria, and may serve as an important adaptive mechanism for cyanobacterial survival.
- Klíčová slova
- cyanobacterium, cytochrome b559, photosynthesis, photosystem II (PSII), tandem gene amplification,
- MeSH
- amplifikace genu MeSH
- cytochromy b genetika metabolismus MeSH
- cytochromy typu b genetika metabolismus MeSH
- fotosystém II (proteinový komplex) * genetika metabolismus MeSH
- Synechocystis * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytochromy b MeSH
- cytochromy typu b MeSH
- fotosystém II (proteinový komplex) * MeSH
Photochemical energy conversion during oxygenic photosynthesis is performed by membrane-embedded chlorophyll-binding protein complexes. The biogenesis and maintenance of these complexes requires auxiliary protein factors that optimize the assembly process and protect nascent complexes from photodamage. In cyanobacteria, several lipoproteins contribute to the biogenesis and function of the photosystem II (PSII) complex. They include CyanoP, CyanoQ, and Psb27, which are all attached to the lumenal side of PSII complexes. Here, we show that the lumenal Ycf48 assembly factor found in the cyanobacterium Synechocystis sp. PCC 6803 is also a lipoprotein. Detailed mass spectrometric analysis of the isolated protein supported by site-directed mutagenesis experiments indicates lipidation of the N-terminal C29 residue of Ycf48 and removal of three amino acids from the C-terminus. The lipobox sequence in Ycf48 contains a cysteine residue at the -3 position compared to Leu/Val/Ile residues found in the canonical lipobox sequence. The atypical Ycf48 lipobox sequence is present in most cyanobacteria but is absent in eukaryotes. A possible role for lipoproteins in the coordinated assembly of cyanobacterial PSII is discussed.
- Klíčová slova
- chlorophyll-binding proteins, photosynthesis, photosystem II,
- MeSH
- bakteriální proteiny metabolismus MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- metabolismus lipidů * MeSH
- Synechocystis metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fotosystém II (proteinový komplex) MeSH
Certain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation1,2. The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy3. Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref. 4) or super-rogue D1 (ref. 5), a paralogue of the D1 subunit of photosystem II (PSII) which, together with D2, bind cofactors involved in the light-driven oxidation of water. Current ideas suggest that ChlF oxidizes Chl a to Chl f in a homodimeric ChlF reaction centre (RC) complex and represents a missing link in the evolution of the heterodimeric D1/D2 RC of PSII (refs. 4,6). However, unambiguous biochemical support for this proposal is lacking. Here, we show that ChlF can substitute for D1 to form modified PSII complexes capable of producing Chl f. Remarkably, mutation of just two residues in D1 converts oxygen-evolving PSII into a Chl f synthase. Overall, we have identified a new class of PSII complex, which we term 'super-rogue' PSII, with an unexpected role in pigment biosynthesis rather than water oxidation.
- MeSH
- chlorofyl analogy a deriváty biosyntéza MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- geneticky modifikované mikroorganismy metabolismus MeSH
- sekvenční analýza proteinů MeSH
- sinice genetika MeSH
- Synechocystis metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
- chlorophyll f MeSH Prohlížeč
- fotosystém II (proteinový komplex) MeSH
The biogenesis of the cyanobacterial photosystem II (PSII) complex requires a number of auxiliary assembly factors that improve efficiency of the process but their precise function is not well understood. To assess a possible synergic action of the Ycf48 and Ycf39 factors acting in early steps of the biogenesis via interaction with the nascent D1 subunit of PSII, we constructed and characterised a double mutant of the cyanobacterium Synechocystis PCC 6803 lacking both these proteins. In addition, we also deleted the ycf39 gene in the double mutant lacking Ycf48 and Pam68, the latter being a ribosomal factor promoting insertion of chlorophyll (Chl) into the CP47 subunit of PSII. The resulting double ΔYcf48/ΔYcf39 and triple ΔYcf48/ΔPam68/ΔYcf39 mutants were deficient in PSII and total Chl, and in contrast to the source mutants, they lost the capacity for autotrophy. Interestingly, autotrophic growth was restored in both of the new multiple mutants by enhancing Chl biosynthesis using a specific ferrochelatase inhibitor. Taking together with the weak radioactive labelling of the D1 protein, these findings can be explained by inhibition of the D1 synthesis caused by the lack and/or incorrect binding of Chl molecules. The results emphasise the key importance of the sufficient Chl supply for the PSII biogenesis and also support the existence of a so far enigmatic regulatory mechanism leading to the reduced overall Chl biosynthesis/accumulation when the PSII assembly is impaired.
- MeSH
- autotrofní procesy MeSH
- bakteriální proteiny genetika metabolismus MeSH
- chlorofyl metabolismus MeSH
- delece genu MeSH
- fotosystém II (proteinový komplex) genetika metabolismus MeSH
- mutace MeSH
- Synechocystis genetika růst a vývoj metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- chlorofyl MeSH
- fotosystém II (proteinový komplex) MeSH
Oxygenic photosynthesis relies on accessory factors to promote the assembly and maintenance of the photosynthetic apparatus in the thylakoid membranes. The highly conserved membrane-bound rubredoxin-like protein RubA has previously been implicated in the accumulation of both PSI and PSII, but its mode of action remains unclear. Here, we show that RubA in the cyanobacterium Synechocystis sp PCC 6803 is required for photoautotrophic growth in fluctuating light and acts early in PSII biogenesis by promoting the formation of the heterodimeric D1/D2 reaction center complex, the site of primary photochemistry. We find that RubA, like the accessory factor Ycf48, is a component of the initial D1 assembly module as well as larger PSII assembly intermediates and that the redox-responsive rubredoxin-like domain is located on the cytoplasmic surface of PSII complexes. Fusion of RubA to Ycf48 still permits normal PSII assembly, suggesting a spatiotemporal proximity of both proteins during their action. RubA is also important for the accumulation of PSI, but this is an indirect effect stemming from the downregulation of light-dependent chlorophyll biosynthesis induced by PSII deficiency. Overall, our data support the involvement of RubA in the redox control of PSII biogenesis.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- biologické pigmenty izolace a purifikace MeSH
- chlorofyl biosyntéza MeSH
- fotosyntéza fyziologie MeSH
- fotosystém I (proteinový komplex) metabolismus MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- mutace MeSH
- rubredoxiny chemie genetika metabolismus MeSH
- Synechocystis genetika růst a vývoj metabolismus MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- biologické pigmenty MeSH
- chlorofyl MeSH
- fotosystém I (proteinový komplex) MeSH
- fotosystém II (proteinový komplex) MeSH
- rubredoxiny MeSH