Nejvíce citovaný článek - PubMed ID 18581976
Risk of occupational allergy to stored grain arthropods and false pest-risk perception in Czech grain stores
Taxonomy provides a general foundation for research on insects. Using stored product pest (SPP) arthropods as a model group, this article overviews the historical impacts of taxonomy on applied entomology. The article surveys the dynamics of historical descriptions of new species in various SPP taxa; the majority of all species (90%) were described prior to 1925, while the key pests were described prior to 1866. The review shows that process of describing new SPP species is not random but is influenced by following factors: (i) larger species tend to be described earlier than smaller and SPP moths and beetles are described earlier than psocids and mites; (ii) key economic pests are on average described earlier than less significant ones. Considering a species name as a "password" to unique information resources, this review also assesses the historical number of synonymous or duplicate names of SPP species. Pests belonging to some higher taxa Lepidoptera and Coleoptera has accumulated more scientific synonyms than those others belonging to Psocoptera and Acari. Number of synonyms positively correlated with the economic importance of SPP species. The review summarized semantic origin of SPP names showing minor proportion of names (17.6%) are toponyms (geography) or eponyms (people), while the majority (82.4%) fall into other categories (descriptive, etc.). It is concluded that awareness of taxonomic advances, including changes to species and higher taxa names, should be effectively communicated to pest control practitioners and applied entomology students, and specifically addressed in relevant textbooks, web media, and databases.
- Klíčová slova
- Acari, insects, stored commodities, synonyms, taxonomy,
- MeSH
- entomologie * dějiny MeSH
- hmyz * klasifikace MeSH
- klasifikace * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Flour beetles of the genus Tribolium Macleay (Coleoptera: Tenebrionidae) are important stored product pests in China and worldwide. They are often found or are intercepted in grain depots, flour mills, and entry-exit ports, etc. Traditionally, Tribolium species are identified according to the morphological characteristics of the adult. However, it is almost impossible to rapidly identify adult fragments and non-adult stages based on external morphological characteristics. Molecular techniques for the rapid and accurate identification of Tribolium species are required, particularly for pest monitoring and the quarantine of stored products pests. Here, we establish DNA barcoding, species-specific PCR, and real-time PCR techniques for the identification of six stored-product pest Tribolium species including T. castaneum, T. confusum, T. destructor, T. madens, T. freemani and T. brevicornis. We detected the mitochondrial DNA cytochrome oxidase subunit I (COI) barcodes for Tribolium from 18 geographic populations and 101 individuals, built a Tribolium DNA barcode library, and designed species-specific primers and TaqMan probes for the above six Tribolium species. The three techniques were applied to identify Tribolium collected from stored samples and samples captured from quarantine ports. The results demonstrated that three techniques were all able to identify the six species of Tribolium both rapidly and accurately.
- MeSH
- DNA primery metabolismus MeSH
- DNA chemie izolace a purifikace metabolismus MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- respirační komplex IV chemie genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční seřazení MeSH
- taxonomické DNA čárové kódování * MeSH
- Tribolium klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA primery MeSH
- DNA MeSH
- respirační komplex IV MeSH
The rate of population increase of three mite species, Acarus siro (L.), Lepidoglyphus destructor (Schrank) and Tyrophagus putrescentiae (Schrank), was studied on various types of barley and at various combinations of temperature and humidity. The mites were added into the chambers and incubated for 21 days on seven different kinds of barley coming from four sites, including six cultivars and a mixture. The population increase of all species was higher on the mixture than on any other cultivar, except for Sebastian and Calgary. The increase of mites was studied at constant temperatures ranging from 5 to 35 °C and relative humidity (RH) ranging from 50 to 90 %. Positive rate of increase was found above 70 % RH for all species. The optimal humidity was at 85 % RH for A. siro and L. destructor and at 90 % RH for T. putrescentiae. As concerns the temperature, positive rate of increase was found at temperatures higher than 10, 15 and 20 °C for A. siro, L. destructor and T. putrescentiae, respectively. The temperature optima were at 23, 25, and 30 °C for A. siro, L. destructor and T. putrescentiae, respectively. Model estimated on laboratory data was then fitted to temperature and humidity records from August to November in the Czech grain store. Estimated population rate of increase was rarely positive: for A. siro it was for 24 %, for L. destructor for only 1 % and for T. putrescentiae for only 7 % days of the study period. It is concluded that in the climatic conditions of the Czech Republic the population increase of three mite pests is negligible during autumn and winter.
- MeSH
- Acari fyziologie MeSH
- ječmen (rod) klasifikace MeSH
- populační dynamika MeSH
- teplota * MeSH
- vlhkost * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Internal bacterial communities of synanthropic mites Acarus siro, Dermatophagoides farinae, Lepidoglyphus destructor, and Tyrophagus putrescentiae (Acari: Astigmata) were analyzed by culturing and culture-independent approaches from specimens obtained from laboratory colonies. Homogenates of surface-sterilized mites were used for cultivation on non-selective agar and DNA extraction. Isolated bacteria were identified by sequencing of the 16S rRNA gene. PCR amplified 16S rRNA genes were analyzed by terminal restriction fragment length polymorphism analysis (T-RFLP) and cloning sequencing. Fluorescence in situ hybridization using universal bacterial probes was used for direct bacterial localization. T-RFLP analysis of 16S rRNA gene revealed distinct species-specific bacterial communities. The results were further confirmed by cloning and sequencing (284 clones). L. destructor and D. farinae showed more diverse communities then A. siro and T. putrescentiae. In the cultivated part of the community, the mean CFUs from four mite species ranged from 5.2 × 10(2) to 1.4 × 10(3) per mite. D. farinae had significantly higher CFUs than the other species. Bacteria were located in the digestive and reproductive tract, parenchymatical tissue, and in bacteriocytes. Among the clones, Bartonella-like bacteria occurring in A. siro and T. putresecentiae represented a distinct group related to Bartonellaceae and to Bartonella-like symbionts of ants. The clones of high similarity to Xenorhabdus cabanillasii were found in L. destructor and D. farinae, and one clone related to Photorhabdus temperata in A. siro. Members of Sphingobacteriales cloned from D. farinae and A. siro clustered with the sequences of "Candidatus Cardinium hertigii" and as a separate novel cluster.
- MeSH
- Acari klasifikace genetika mikrobiologie MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- Dermatophagoides farinae mikrobiologie MeSH
- druhová specificita MeSH
- hybridizace in situ fluorescenční MeSH
- klonování DNA MeSH
- molekulární sekvence - údaje MeSH
- polymerázová řetězová reakce MeSH
- polymorfismus délky restrikčních fragmentů MeSH
- RNA ribozomální 16S genetika MeSH
- roztoči mikrobiologie MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Bacillus thuringiensis (Bt) toxins present a potential for control of pest mites. Information concerning the effect of Bt and its possible application to the biocontrol of synathropic mites is rare. The toxic effect of Bacillus thuringiensis var. tenebrionis producing Cry3A toxin was tested on the mites Acarus siro L., Tyrophagus putrescentiae (Schrank), Dermatophagoides farinae Hughes, and Lepidoglyphus destructor (Schrank) via feeding tests. Fifty mites were reared on Bt additive diets in concentrations that ranged from 0 to 100 mg g(-1) under optimal conditions for their development. After 21 days, the mites were counted and the final populations were analyzed using a polynomial regression model. The Bt diet suppressed population growth of the four mite species. The fitted doses of Bt for 50% suppression of population growth were diets ranging from 25 to 38 mg g(-1). There were no remarkable differences among species. Possible applications of Bt for the control of synanthropic mites are discussed.
- MeSH
- akaricidy * MeSH
- bakteriální proteiny * MeSH
- biologická kontrola škůdců * MeSH
- druhová specificita MeSH
- endotoxiny * MeSH
- hemolyziny * MeSH
- roztoči * MeSH
- toxiny Bacillus thuringensis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akaricidy * MeSH
- bakteriální proteiny * MeSH
- endotoxiny * MeSH
- hemolyziny * MeSH
- insecticidal crystal protein, Bacillus Thuringiensis MeSH Prohlížeč
- toxiny Bacillus thuringensis MeSH