Nejvíce citovaný článek - PubMed ID 18620434
Bilirubin is the principal product of heme catabolism. High concentrations of the pigment are neurotoxic, yet slightly elevated levels are beneficial. Being a potent antioxidant, oxidative transformations of bilirubin occur in vivo and lead to various oxidized fragments. The mechanisms of their formation, intrinsic biological activities, and potential roles in human pathophysiology are poorly understood. Degradation methods have been used to obtain samples of bilirubin oxidation products for research. Here, we report a complementary, fully synthetic method of preparation. Our strategy leverages repeating substitution patterns in the parent tetracyclic pigment. Functionalized ready-to-couple γ-lactone, γ-lactam, and pyrrole monocyclic building blocks were designed and efficiently synthesized. Subsequent modular combinations, supported by metal-catalyzed borylation and cross-coupling chemistries, translated into the concise assembly of the structurally diverse bilirubin oxidation products (BOXes, propentdyopents, and biopyrrins). The discovery of a new photoisomer of biopyrrin A named lumipyrrin is reported. Synthetic bilirubin oxidation products made available in sufficient purity and quantity will support future in vitro and in vivo investigations.
- MeSH
- bilirubin * metabolismus MeSH
- lidé MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- pyrroly * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bilirubin * MeSH
- pyrroly * MeSH
In view of their unique characteristics and properties, silver nanomaterials (Ag NMs) have been used not only in the field of nanomedicine but also for diverse advanced catalytic technologies. In this comprehensive review, light is shed on general synthetic approaches encompassing chemical reduction, sonochemical, microwave, and thermal treatment among the preparative methods for the syntheses of Ag-based NMs and their catalytic applications. Additionally, some of the latest innovative approaches such as continuous flow integrated with MW and other benign approaches have been emphasized that ultimately pave the way for sustainability. Moreover, the potential applications of emerging Ag NMs, including sub nanomaterials and single atoms, in the field of liquid-phase catalysis, photocatalysis, and electrocatalysis as well as a positive role of Ag NMs in catalytic reactions are meticulously summarized. The scientific interest in the synthesis and applications of Ag NMs lies in the integrated benefits of their catalytic activity, selectivity, stability, and recovery. Therefore, the rise and journey of Ag NM-based catalysts will inspire a new generation of chemists to tailor and design robust catalysts that can effectively tackle major environmental challenges and help to replace noble metals in advanced catalytic applications. This overview concludes by providing future perspectives on the research into Ag NMs in the arena of electrocatalysis and photocatalysis.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A novel strategy is described to prepare magnetic Pd nanocatalyst by conjugating lignin with Fe3O4 nanoparticles via activation of calcium lignosulfonate, followed by combination with Fe3O4 nanoparticles. Tethering 5-amino-1H-tetrazole to calcium lignosulfonate-magnetite hybrid through 3-chloropropyl triethoxysilane enabled coordination of Pd salt with Fe3O4-lignosulfonate@5-amino-1H-tetrazole. The underlying changes of the lignosulfonate are identified, and the structural morphology of attained Fe3O4-lignosulfonate@5-amino-1H-tetrazole-Pd(II) (FLA-Pd) is characterized by Fourier transform infrared, thermogravimetry differential thermal analysis, energy-dispersive spectrometry, field-emission scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometer (VSM). The synthesized FLA-Pd displayed high activity for phosphine-free C(sp2)-C(sp2) coupling in water, and the catalyst could be reused for seven successive cycles.
- Publikační typ
- časopisecké články MeSH
A novel magnetic-functionalized-multi-walled carbon nanotubes@chitosan N-heterocyclic carbene-palladium (M-f-MWCNTs@chitosan-NHC-Pd) nanocatalyst is developed in two steps. The first step entails the fabrication of a three-component cross-linking of chitosan utilizing the Debus-Radziszewski imidazole approach. The second step comprised the covalent grafting of prepared cross-linked chitosan to the outer walls of magnetically functionalized MWCNTs (M-f-MWCNTs) followed by introducing PdCl2 to generate the m-f-MWCNTs@cross-linked chitosan with a novel NHC ligand. The repeated units of the amino group in the chitosan polymer chain provide the synthesis of several imidazole units which also increase the number of Pd linkers thus leading to higher catalyst efficiency. The evaluation of catalytic activity was examined in the expeditious synthesis of biaryl compounds using the Suzuki cross-coupling reaction of various aryl halides and aryl boronic acids; ensuing results show the general applicability of nanocatalyst with superior conversion reaction yields, high turnover frequencies (TOFs) and turnover numbers (TON). Meanwhile, nanocatalyst showed admirable potential in reusability tests, being recycled for five runs without losing significant activities under optimum reaction conditions. The successfully synthesis of catalyst and its characterization was confirmed using the Fourier transform infrared spectrometer (FT-IR), spectrometer transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and thermogravimetric analysis (TGA).
- Klíčová slova
- MWCNTs, N-heterocyclic carbene, Suzuki cross-coupling reaction, cross-linked chitosan,
- MeSH
- chitosan chemie MeSH
- imidazoly chemie farmakologie MeSH
- katalýza MeSH
- magnetické jevy * MeSH
- methan analogy a deriváty chemie MeSH
- nanotrubičky uhlíkové chemie MeSH
- palladium chemie MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- termogravimetrie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- carbene MeSH Prohlížeč
- chitosan MeSH
- imidazole MeSH Prohlížeč
- imidazoly MeSH
- methan MeSH
- nanotrubičky uhlíkové MeSH
- palladium MeSH
The cyclin-dependent kinase inhibitor, CAN508, was protected with di-tert-butyl dicarbonate to access the amino-benzoylated pyrazoles. The bromo derivatives were further arylated by Suzuki-Miyaura coupling using the XPhos Pd G2 pre-catalyst. The coupling reaction provided generally the para-substituted benzoylpyrazoles in the higher yields than the meta-substituted ones. The Boc groups were only utilized as directing functionalities for the benzoylation step and were hydrolyzed under conditions of Suzuki-Miyaura coupling, which allowed for elimination of the additional deprotection step.
- Klíčová slova
- Boc-protection, CDK inhibitor, Suzuki-Miyaura reaction, XPhos Pd G2, acylation, pyrazole,
- MeSH
- acylace MeSH
- azosloučeniny chemie MeSH
- hydrolýza MeSH
- inhibitory proteinkinas chemie MeSH
- katalýza MeSH
- molekulární struktura MeSH
- palladium chemie MeSH
- pyrazoly chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- azosloučeniny MeSH
- CAN 508 MeSH Prohlížeč
- inhibitory proteinkinas MeSH
- palladium MeSH
- pyrazoly MeSH