Most cited article - PubMed ID 19812120
Cardiac biomarkers in a model of acute catecholamine cardiotoxicity
Cardiovascular diseases are a leading cause of morbidity and mortality in most developed countries of the world. Pharmaceuticals, illicit drugs, and toxins can significantly contribute to the overall cardiovascular burden and thus deserve attention. The present article is a systematic overview of drugs that may induce distinct cardiovascular toxicity. The compounds are classified into agents that have significant effects on the heart, blood vessels, or both. The mechanism(s) of toxic action are discussed and treatment modalities are briefly mentioned in relevant cases. Due to the large number of clinically relevant compounds discussed, this article could be of interest to a broad audience including pharmacologists and toxicologists, pharmacists, physicians, and medicinal chemists. Particular emphasis is given to clinically relevant topics including the cardiovascular toxicity of illicit sympathomimetic drugs (e.g., cocaine, amphetamines, cathinones), drugs that prolong the QT interval, antidysrhythmic drugs, digoxin and other cardioactive steroids, beta-blockers, calcium channel blockers, female hormones, nonsteroidal anti-inflammatory, and anticancer compounds encompassing anthracyclines and novel targeted therapy interfering with the HER2 or the vascular endothelial growth factor pathway.
- Keywords
- dysrhythmia, heart failure, hypertension, myocardial infarction, stroke,
- MeSH
- Alkaloids adverse effects MeSH
- Amphetamines adverse effects MeSH
- Anti-Arrhythmia Agents adverse effects MeSH
- Anti-Inflammatory Agents, Non-Steroidal adverse effects MeSH
- Adrenergic beta-Antagonists adverse effects MeSH
- Calcium Channel Blockers adverse effects MeSH
- Stroke drug therapy MeSH
- Digoxin adverse effects MeSH
- Hormones adverse effects MeSH
- Cardiovascular Diseases chemically induced drug therapy MeSH
- Cardiovascular System drug effects MeSH
- Cocaine adverse effects MeSH
- Humans MeSH
- Antineoplastic Agents adverse effects MeSH
- Heart Rate drug effects MeSH
- Steroids adverse effects MeSH
- Vascular Endothelial Growth Factor A MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Alkaloids MeSH
- Amphetamines MeSH
- Anti-Arrhythmia Agents MeSH
- Anti-Inflammatory Agents, Non-Steroidal MeSH
- Adrenergic beta-Antagonists MeSH
- Calcium Channel Blockers MeSH
- cathinone MeSH Browser
- Digoxin MeSH
- Hormones MeSH
- Cocaine MeSH
- Antineoplastic Agents MeSH
- Steroids MeSH
- Vascular Endothelial Growth Factor A MeSH
OBJECTIVES: Rutin, quercetin-3-O-rutinoside, a natural flavonol glycoside, has shown various in vitro benefits with potential use treating human diseases, especially cardiovascular system disorders. Antioxidant properties are assumed to underlie the majority of these benefits. Yet rutin pro-oxidant properties have been reported as well. Our research group has recently shown aggravating effects on isoprenaline (ISO)-induced cardiotoxicity in Wistar:Han rats after 24 hours. METHODS: This study was designed to examine in more detail the reasons for the negative effects of rutin (11.5 and 46 mg/kg, i.v.) after administration of ISO (100 mg/kg, s.c.) in rats within 2 hours of continuous experiment and in the H9c2 cardiomyoblast-derived cell line. RESULTS: Like our previous findings, rutin did not (11.5 or 46 mg/kg, i.v.) reduce the ISO-induced mortality within 2 hours although the lower dose significantly reduced cardiac troponin T (cTnT) and partly improved the histological findings. In contrast, the higher dose increased the mortality in comparison with solvent (1.26% w/v sodium bicarbonate). This was not caused by any specific haemodynamic disturbances. It appears to be associated with oxidative stress as rutin enhanced intracellular reactive oxygen species formation in vitro and had the tendency to increase it in vivo. CONCLUSIONS: Rutin, likely due to its pro-oxidative effects, can exacerbate catecholamine cardiotoxicity depending on the dose used.
- Keywords
- Catecholamine, Flavonoid, H9c2 cell line, Isoprenaline, Reactive oxygen species, Rutin, Wistar rat,
- MeSH
- Cell Line MeSH
- Dinoprost analogs & derivatives blood MeSH
- Electrocardiography MeSH
- Glutathione blood MeSH
- Injections, Intravenous MeSH
- Isoproterenol adverse effects MeSH
- Kaplan-Meier Estimate MeSH
- Cardiotoxicity etiology mortality MeSH
- Myocardium pathology MeSH
- Rats, Wistar MeSH
- Reactive Oxygen Species metabolism MeSH
- Rutin administration & dosage adverse effects pharmacokinetics MeSH
- Heart drug effects MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 8-epi-prostaglandin F2alpha MeSH Browser
- Dinoprost MeSH
- Glutathione MeSH
- Isoproterenol MeSH
- Reactive Oxygen Species MeSH
- Rutin MeSH
Iron and copper release participates in the myocardial injury under ischemic conditions and hence protection might be achieved by iron chelators. Data on copper chelation are, however, sparse. The effect of the clinically used copper chelator D-penicillamine in the catecholamine model of acute myocardial injury was tested in cardiomyoblast cell line H9c2 and in Wistar Han rats. D-Penicillamine had a protective effect against catecholamine-induced injury both in vitro and in vivo. It protected H9c2 cells against the catecholamine-induced viability loss in a dose-dependent manner. In animals, both intravenous D-penicillamine doses of 11 (low) and 44 mg/kg (high) decreased the mortality caused by s.c. isoprenaline (100 mg/kg) from 36% to 14% and 22%, respectively. However, whereas the low D-penicillamine dose decreased the release of cardiac troponin T (specific marker of myocardial injury), the high dose resulted in an increase. Interestingly, the high dose led to a marked elevation in plasma vitamin C. This might be related to potentiation of oxidative stress, as suggested by additional in vitro experiments with D-penicillamine (iron reduction and the Fenton reaction). In conclusion, D-penicillamine has protective potential against catecholamine-induced cardiotoxicity; however the optimal dose selection seems to be crucial for further application.
- MeSH
- Cell Line MeSH
- Iron Chelating Agents pharmacology MeSH
- Deferoxamine pharmacology MeSH
- Ions MeSH
- Cardiotonic Agents chemistry pharmacology MeSH
- Catecholamines MeSH
- Hydrogen-Ion Concentration MeSH
- Myocardium pathology MeSH
- Penicillamine chemistry pharmacology MeSH
- Rats, Wistar MeSH
- Troponin T metabolism MeSH
- Cell Survival drug effects MeSH
- Iron metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Iron Chelating Agents MeSH
- Deferoxamine MeSH
- Ions MeSH
- Cardiotonic Agents MeSH
- Catecholamines MeSH
- Penicillamine MeSH
- Troponin T MeSH
- Iron MeSH
Catecholamines are endogenous amines that participate in the maintenance of cardiovascular system homeostasis. However, excessive release or exogenous administration of catecholamines is cardiotoxic. The synthetic catecholamine, isoprenaline (isoproterenol, ISO), with non-selective β-agonistic activity has been used as a viable model of acute myocardial toxicity for many years. Since the pathophysiology of ISO-cardiotoxicity is complex, the aim of this study was to elucidate the effect of oral quercetin pretreatment on myocardial ISO toxicity. Wistar-Han rats were randomly divided into four groups: solvent or quercetin administered orally by gavage in a dose of 10 mg kg(-1) daily for 7 days were followed by s.c. water for injection or ISO in a dose of 100 mg kg(-1). Haemodynamic, ECG and biochemical parameters were measured; effects on blood vessels and myocardial histology were assessed, and accompanying pharmacokinetic analysis was performed. Quercetin was unable to protect the cardiovascular system against acute ISO cardiotoxicity (stroke volume decrease, cardiac troponin T release, QRS-T junction elevation and histological impairment). The sole positive effect of quercetin on catecholamine-induced cardiotoxicity was the normalization of increased left ventricular end-diastolic pressure caused by ISO. Quercetin did not reverse the increased responsiveness of rat aorta to vasoconstriction in ISO-treated animals, but it decreased the same parameter in the control animals. Accompanying pharmacokinetic analysis showed absorption of quercetin and its metabolite 3-hydroxyphenylacetic acid formed by bacterial microflora. In conclusion, a daily oral dose of 10 mg kg(-1) of quercetin for 7 days did not ameliorate acute ISO-cardiovascular toxicity in rats despite minor positive cardiovascular effects.
- MeSH
- Aorta, Thoracic drug effects physiology MeSH
- Administration, Oral MeSH
- Hemodynamics MeSH
- Isoproterenol MeSH
- Cardiotoxicity blood drug therapy pathology physiopathology MeSH
- Rats MeSH
- Myocardium pathology MeSH
- Quercetin blood pharmacokinetics therapeutic use MeSH
- Troponin T blood MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Isoproterenol MeSH
- Quercetin MeSH
- Troponin T MeSH