Nejvíce citovaný článek - PubMed ID 21156758
Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies
To provide insights into the fate of transposable elements (TEs) across timescales in a post-polyploidization context, we comparatively investigate five sibling Dactylorhiza allotetraploids (Orchidaceae) formed independently and sequentially between 500 and 100K generations ago by unidirectional hybridization between diploids D. fuchsii and D. incarnata. Our results first reveal that the paternal D. incarnata genome shows a marked increased content of LTR retrotransposons compared to the maternal species, reflected in its larger genome size and consistent with a previously hypothesized bottleneck. With regard to the allopolyploids, in the youngest D. purpurella both genome size and TE composition appear to be largely additive with respect to parents, whereas for polyploids of intermediate ages we uncover rampant genome expansion on a magnitude of multiple entire genomes of some plants such as Arabidopsis. The oldest allopolyploids in the series are not larger than the intermediate ones. A putative tandem repeat, potentially derived from a non-autonomous miniature inverted-repeat TE (MITE) drives much of the genome dynamics in the allopolyploids. The highly dynamic MITE-like element is found in higher proportions in the maternal diploid, D. fuchsii, but is observed to increase in copy number in both subgenomes of the allopolyploids. Altogether, the fate of repeats appears strongly regulated and therefore predictable across multiple independent allopolyploidization events in this system. Apart from the MITE-like element, we consistently document a mild genomic shock following the allopolyploidizations investigated here, which may be linked to their relatively large genome sizes, possibly associated with strong selection against further genome expansions.
- Klíčová slova
- allopolyploidy, genome size, genomic shock, marsh orchids, transposable elements,
- MeSH
- diploidie MeSH
- genom rostlinný MeSH
- lidé MeSH
- mokřady MeSH
- Orchidaceae * genetika MeSH
- polyploidie MeSH
- sourozenci * MeSH
- transpozibilní elementy DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transpozibilní elementy DNA MeSH
Amplification of monomer sequences into long contiguous arrays is the main feature distinguishing satellite DNA from other tandem repeats, yet it is also the main obstacle in its investigation because these arrays are in principle difficult to assemble. Here we explore an alternative, assembly-free approach that utilizes ultra-long Oxford Nanopore reads to infer the length distribution of satellite repeat arrays, their association with other repeats and the prevailing sequence periodicities. Using the satellite DNA-rich legume plant Lathyrus sativus as a model, we demonstrated this approach by analyzing 11 major satellite repeats using a set of nanopore reads ranging from 30 to over 200 kb in length and representing 0.73× genome coverage. We found surprising differences between the analyzed repeats because only two of them were predominantly organized in long arrays typical for satellite DNA. The remaining nine satellites were found to be derived from short tandem arrays located within LTR-retrotransposons that occasionally expanded in length. While the corresponding LTR-retrotransposons were dispersed across the genome, this array expansion occurred mainly in the primary constrictions of the L. sativus chromosomes, which suggests that these genome regions are favourable for satellite DNA accumulation.
- Klíčová slova
- Lathyrus sativus, centromeres, fluorescence in situ hybridization (FISH), heterochromatin, long-range organization, nanopore sequencing, satellite DNA, sequence evolution, technical advance,
- MeSH
- centromera MeSH
- chromozomy rostlin MeSH
- DNA rostlinná genetika MeSH
- frekvence genu * MeSH
- genom rostlinný MeSH
- heterochromatin MeSH
- Lathyrus genetika MeSH
- molekulární evoluce MeSH
- nanopóry * MeSH
- retroelementy * MeSH
- satelitní DNA * MeSH
- tandemové repetitivní sekvence * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- heterochromatin MeSH
- retroelementy * MeSH
- satelitní DNA * MeSH
Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.
- Klíčová slova
- DNA deletion, Fritillaria, Liliaceae, genome size evolution, genome turnover, repetitive DNA, transposable elements (TEs),
- MeSH
- delece genu MeSH
- délka genomu * MeSH
- DNA rostlinná genetika MeSH
- Fritillaria genetika MeSH
- genom rostlinný * MeSH
- molekulární sekvence - údaje MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution.
- Klíčová slova
- Repetitive DNA, continuous characters, genomics, molecular systematics, next-generation sequencing, phylogenetics,
- MeSH
- DNA rostlinná genetika MeSH
- Drosophila klasifikace genetika MeSH
- fylogeneze * MeSH
- genom genetika MeSH
- hmyzí geny genetika MeSH
- Magnoliopsida genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- shluková analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
BACKGROUND AND AIMS: Chromosomal evolution, including numerical and structural changes, is a major force in plant diversification and speciation. This study addresses genomic changes associated with the extensive chromosomal variation of the Mediterranean Prospero autumnale complex (Hyacinthaceae), which includes four diploid cytotypes each with a unique combination of chromosome number (x = 5, 6, 7), rDNA loci and genome size. METHODS: A new satellite repeat PaB6 has previously been identified, and monomers were reconstructed from next-generation sequencing (NGS) data of P. autumnale cytotype B(6)B(6) (2n = 12). Monomers of all other Prospero cytotypes and species were sequenced to check for lineage-specific mutations. Copy number, restriction patterns and methylation levels of PaB6 were analysed using Southern blotting. PaB6 was localized on chromosomes using fluorescence in situ hybridization (FISH). KEY RESULTS: The monomer of PaB6 is 249 bp long, contains several intact and truncated vertebrate-type telomeric repeats and is highly methylated. PaB6 is exceptional because of its high copy number and unprecedented variation among diploid cytotypes, ranging from 10(4) to 10(6) copies per 1C. PaB6 is always located in pericentromeric regions of several to all chromosomes. Additionally, two lineages of cytotype B(7)B(7) (x = 7), possessing either a single or duplicated 5S rDNA locus, differ in PaB6 copy number; the ancestral condition of a single locus is associated with higher PaB6 copy numbers. CONCLUSIONS: Although present in all Prospero species, PaB6 has undergone differential amplification only in chromosomally variable P. autumnale, particularly in cytotypes B(6)B(6) and B(5)B(5). These arose via independent chromosomal fusions from x = 7 to x = 6 and 5, respectively, accompanied by genome size increases. The copy numbers of satellite DNA PaB6 are among the highest in angiosperms, and changes of PaB6 are exceptionally dynamic in this group of closely related cytotypes of a single species. The evolution of the PaB6 copy numbers is discussed, and it is suggested that PaB6 represents a recent and highly dynamic system originating from a small pool of ancestral repeats.
- Klíčová slova
- Hyacinthaceae, PaB6, Prospero autumnale, chromosomal evolution, copy number, differential amplification, fluorescence in situ hybridization (FISH), genome size, next-generation sequencing, pericentric satellite DNA,
- MeSH
- chromozomy rostlin genetika MeSH
- diploidie MeSH
- DNA rostlinná genetika MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- liliovité genetika MeSH
- modely genetické MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- polymerázová řetězová reakce * MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- satelitní DNA genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- telomery metabolismus MeSH
- variabilita počtu kopií segmentů DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- satelitní DNA MeSH