Most cited article - PubMed ID 21228747
Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression: correlations between clinical and electrophysiological findings
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e., height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1 ± 6.6 years old, 125 females). We show that body height correlates with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44 ≤ r ≤ 0.62). Intracranial volume (ICV) correlates with body height (r = 0.46) and the brain volumes and CSA-WM (0.37 ≤ r ≤ 0.77). In comparison, age correlates with cortical GM volume, precentral GM volume, and cortical thickness (-0.21 ≥ r ≥ -0.27). Body weight correlates with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20 ≥ r ≥ -0.23). Body weight further correlates with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r = -0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlates with brain volumes (0.39 ≤ r ≤ 0.64), and with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22 ≥ r ≥ -0.25). Linear mixture of age, sex, or sex and age, explained 2 ± 2%, 24 ± 10%, or 26 ± 10%, of data variance in brain volumetry and SC CSA. The amount of explained variance increased to 33 ± 11%, 41 ± 17%, or 46 ± 17%, when body height, ICV, or body height and ICV were added into the mixture model. In females, the explained variances halved suggesting another unidentified biological factor(s) determining females' central nervous system (CNS) morphology. In conclusion, body size and ICV are significant biological variables. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure; and body size and ICV should be considered as covariates in statistical analyses. Normalization of different brain regions with ICV diminishes their correlations with body size, but simultaneously amplifies ICV-related variance (r = 0.72 ± 0.07) and suppresses volume variance of the different brain regions (r = 0.12 ± 0.19) in the normalized measurements.
- Keywords
- body height and weight, brain, in vivo human neuroimaging, intracranial volume, spinal cord, structural magnetic resonance imaging,
- Publication type
- Journal Article MeSH
Degenerative cervical myelopathy (DCM) represents the final consequence of a series of degenerative changes in the cervical spine, resulting in cervical spinal canal stenosis and mechanical stress on the cervical spinal cord. This process leads to subsequent pathophysiological processes in the spinal cord tissues. The primary mechanism of injury is degenerative compression of the cervical spinal cord, detectable by magnetic resonance imaging (MRI), serving as a hallmark for diagnosing DCM. However, the relative resilience of the cervical spinal cord to mechanical compression leads to clinical-radiological discordance, i.e., some individuals may exhibit MRI findings of DCC without the clinical signs and symptoms of myelopathy. This degenerative compression of the cervical spinal cord without clinical signs of myelopathy, potentially serving as a precursor to the development of DCM, remains a somewhat controversial topic. In this review article, we elaborate on and provide commentary on the terminology, epidemiology, natural course, diagnosis, predictive value, risks, and practical management of this condition-all of which are subjects of ongoing debate.
Degenerative spinal cord compression is a frequent pathological condition with increasing prevalence throughout aging. Initial non-myelopathic cervical spinal cord compression (NMDC) might progress over time into potentially irreversible degenerative cervical myelopathy (DCM). While quantitative MRI (qMRI) techniques demonstrated the ability to depict intrinsic tissue properties, longitudinal in-vivo biomarkers to identify NMDC patients who will eventually develop DCM are still missing. Thus, we aim to review the ability of qMRI techniques (such as diffusion MRI, diffusion tensor imaging (DTI), magnetization transfer (MT) imaging, and magnetic resonance spectroscopy (1H-MRS)) to serve as prognostic markers in NMDC. While DTI in NMDC patients consistently detected lower fractional anisotropy and higher mean diffusivity at compressed levels, caused by demyelination and axonal injury, MT and 1H-MRS, along with advanced and tract-specific diffusion MRI, recently revealed microstructural alterations, also rostrally pointing to Wallerian degeneration. Recent studies also disclosed a significant relationship between microstructural damage and functional deficits, as assessed by qMRI and electrophysiology, respectively. Thus, tract-specific qMRI, in combination with electrophysiology, critically extends our understanding of the underlying pathophysiology of degenerative spinal cord compression and may provide predictive markers of DCM development for accurate patient management. However, the prognostic value must be validated in longitudinal studies.
BACKGROUND: Degenerative cervical spinal cord compression is becoming increasingly prevalent, yet the MRI criteria that define compression are vague, and vary between studies. This contribution addresses the detection of compression by means of the Spinal Cord Toolbox (SCT) and assesses the variability of the morphometric parameters extracted with it. METHODS: Prospective cross-sectional study. Two types of MRI examination, 3 and 1.5 T, were performed on 66 healthy controls and 118 participants with cervical spinal cord compression. Morphometric parameters from 3T MRI obtained by Spinal Cord Toolbox (cross-sectional area, solidity, compressive ratio, torsion) were combined in multivariate logistic regression models with the outcome (binary dependent variable) being the presence of compression determined by two radiologists. Inter-trial (between 3 and 1.5 T) and inter-rater (three expert raters and SCT) variability of morphometric parameters were assessed in a subset of 35 controls and 30 participants with compression. RESULTS: The logistic model combining compressive ratio, cross-sectional area, solidity, torsion and one binary indicator, whether or not the compression was set at level C6/7, demonstrated outstanding compression detection (area under curve =0.947). The single best cut-off for predicted probability calculated using a multiple regression equation was 0.451, with a sensitivity of 87.3% and a specificity of 90.2%. The inter-trial variability was better in Spinal Cord Toolbox (intraclass correlation coefficient was 0.858 for compressive ratio and 0.735 for cross-sectional area) compared to expert raters (mean coefficient for three expert raters was 0.722 for compressive ratio and 0.486 for cross-sectional area). The analysis of inter-rater variability demonstrated general agreement between SCT and three expert raters, as the correlations between SCT and raters were generally similar to those of the raters between one another. CONCLUSIONS: This study demonstrates successful semi-automated compression detection based on four parameters. The inter-trial variability of parameters established through two MRI examinations was conclusively better for Spinal Cord Toolbox compared with that of three experts' manual ratings.
- Keywords
- Spinal cord compression (SCC), cervical spinal cord, magnetic resonance imaging (MRI), myelopathy, reproducibility,
- Publication type
- Journal Article MeSH
BACKGROUND AND PURPOSE: Non-myelopathic degenerative cervical spinal cord compression (NMDC) frequently occurs throughout aging and may progress to potentially irreversible degenerative cervical myelopathy (DCM). Whereas standard clinical magnetic resonance imaging (MRI) and electrophysiological measures assess compression severity and neurological dysfunction, respectively, underlying microstructural deficits still have to be established in NMDC and DCM patients. The study aims to establish tract-specific diffusion MRI markers of electrophysiological deficits to predict the progression of asymptomatic NMDC to symptomatic DCM. METHODS: High-resolution 3 T diffusion MRI was acquired for 103 NMDC and 21 DCM patients compared to 60 healthy controls to reveal diffusion alterations and relationships between tract-specific diffusion metrics and corresponding electrophysiological measures and compression severity. Relationship between the degree of DCM disability, assessed by the modified Japanese Orthopaedic Association scale, and tract-specific microstructural changes in DCM patients was also explored. RESULTS: The study identified diffusion-derived abnormalities in the gray matter, dorsal and lateral tracts congruent with trans-synaptic degeneration and demyelination in chronic degenerative spinal cord compression with more profound alterations in DCM than NMDC. Diffusion metrics were affected in the C3-6 area as well as above the compression level at C3 with more profound rostral deficits in DCM than NMDC. Alterations in lateral motor and dorsal sensory tracts correlated with motor and sensory evoked potentials, respectively, whereas electromyography outcomes corresponded with gray matter microstructure. DCM disability corresponded with microstructure alteration in lateral columns. CONCLUSIONS: Outcomes imply the necessity of high-resolution tract-specific diffusion MRI for monitoring degenerative spinal pathology in longitudinal studies.
- Keywords
- diffusion magnetic resonance imaging, diffusion tensor imaging, spinal cord compression,
- MeSH
- Diffusion Magnetic Resonance Imaging MeSH
- Spinal Cord Compression * diagnostic imaging MeSH
- Cervical Vertebrae diagnostic imaging MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Spinal Cord diagnostic imaging MeSH
- Spinal Cord Diseases * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Diffusion magnetic resonance imaging (dMRI) proved promising in patients with non-myelopathic degenerative cervical cord compression (NMDCCC), i.e., without clinically manifested myelopathy. Aim of the study is to present a fast multi-shell HARDI-ZOOMit dMRI protocol and validate its usability to detect microstructural myelopathy in NMDCCC patients. In 7 young healthy volunteers, 13 age-comparable healthy controls, 18 patients with mild NMDCCC and 15 patients with severe NMDCCC, the protocol provided higher signal-to-noise ratio, enhanced visualization of white/gray matter structures in microstructural maps, improved dMRI metric reproducibility, preserved sensitivity (SE = 87.88%) and increased specificity (SP = 92.31%) of control-patient group differences when compared to DTI-RESOLVE protocol (SE = 87.88%, SP = 76.92%). Of the 56 tested microstructural parameters, HARDI-ZOOMit yielded significant patient-control differences in 19 parameters, whereas in DTI-RESOLVE data, differences were observed in 10 parameters, with mostly lower robustness. Novel marker the white-gray matter diffusivity gradient demonstrated the highest separation. HARDI-ZOOMit protocol detected larger number of crossing fibers (5-15% of voxels) with physiologically plausible orientations than DTI-RESOLVE protocol (0-8% of voxels). Crossings were detected in areas of dorsal horns and anterior white commissure. HARDI-ZOOMit protocol proved to be a sensitive and practical tool for clinical quantitative spinal cord imaging.
- MeSH
- Biomedical Engineering MeSH
- Diffusion Magnetic Resonance Imaging * MeSH
- Adult MeSH
- Spinal Cord Compression diagnostic imaging pathology MeSH
- Cervical Vertebrae pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Spinal Cord Diseases diagnostic imaging pathology MeSH
- Signal-To-Noise Ratio MeSH
- Reproducibility of Results MeSH
- Sensitivity and Specificity MeSH
- Cluster Analysis MeSH
- Case-Control Studies MeSH
- Diffusion Tensor Imaging MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
OBJECTIVES: To update a previously established list of predictors for neurological cervical cord dysfunction in nonmyelopathic degenerative cervical cord compression (NMDCCC). MATERIAL AND METHODS: A prospective observational follow-up study was performed in a cohort of 112 consecutive NMDCCC subjects (55 women and 57 men; median age 59 years, range 40-79 years), either asymptomatic (40 subjects) or presenting with cervical radiculopathy or cervical pain (72 subjects), who had completed a follow-up of at least 2 years (median duration 3 years). Development of clinical signs of degenerative cervical myelopathy (DCM) as the main outcome was monitored and correlated with a large number of demographic, clinical, electrophysiological, and MRI parameters including diffusion tensor imaging characteristics (DTI) established at entry. RESULTS: Clinical evidence of the first signs and symptoms of DCM were found in 15 patients (13.4%). Development of DCM was associated with several parameters, including the clinical (radiculopathy, prolonged gait and run-time), electrophysiological (SEP, MEP and EMG signs of cervical cord dysfunction), and MRI (anteroposterior diameter of the cervical cord and cervical canal, cross-sectional area, compression ratio, type of compression, T2 hyperintensity). DTI parameters showed no significant predictive power. Multivariate analysis showed that radiculopathy, cross-sectional area (CSA) ≤ 70.1 mm2, and compression ratio (CR) ≤ 0.4 were the only independent significant predictors for progression into symptomatic myelopathy. CONCLUSIONS: In addition to previously described independent predictors of DCM development (radiculopathy and electrophysiological dysfunction of cervical cord), MRI parameters, namely CSA and CR, should also be considered as significant predictors for development of DCM.
- Keywords
- cervical radiculopathy, degenerative cervical myelopathy, magnetic resonance imaging, nonmyelopathic degenerative cervical cord compression, predictive model,
- MeSH
- Adult MeSH
- Physical Examination MeSH
- Spinal Cord Compression diagnosis diagnostic imaging physiopathology MeSH
- Cervical Vertebrae diagnostic imaging physiopathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Follow-Up Studies MeSH
- Spinal Cord Diseases diagnosis diagnostic imaging physiopathology MeSH
- Disease Progression MeSH
- Prospective Studies MeSH
- Aged MeSH
- Diffusion Tensor Imaging MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH