Nejvíce citovaný článek - PubMed ID 21445344
The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny
The genus Trifolium L. is characterized by basic chromosome numbers 8, 7, 6, and 5. We conducted a genus-wide study of ribosomal DNA (rDNA) structure variability in diploids and polyploids to gain insight into evolutionary history. We used fluorescent in situ hybridization to newly investigate rDNA variation by number and position in 30 Trifolium species. Evolutionary history among species was examined using 85 available sequences of internal transcribed spacer 1 (ITS1) of 35S rDNA. In diploid species with ancestral basic chromosome number (x = 8), one pair of 5S and 26S rDNA in separate or adjacent positions on a pair of chromosomes was prevalent. Genomes of species with reduced basic chromosome numbers were characterized by increased number of signals determined on one pair of chromosomes or all chromosomes. Increased number of signals was observed also in diploids Trifolium alpestre and Trifolium microcephalum and in polyploids. Sequence alignment revealed ITS1 sequences with mostly single nucleotide polymorphisms, and ITS1 diversity was greater in diploids with reduced basic chromosome numbers compared to diploids with ancestral basic chromosome number (x = 8) and polyploids. Our results suggest the presence of one 5S rDNA site and one 26S rDNA site as an ancestral state.
- Klíčová slova
- 26S rDNA, 5S rDNA, clover, fluorescent in situ hybridization, genome structure, nucleotide polymorphism,
- Publikační typ
- časopisecké články MeSH
Edible banana cultivars are diploid, triploid, or tetraploid hybrids, which originated by natural cross hybridization between subspecies of diploid Musa acuminata, or between M. acuminata and diploid Musa balbisiana. The participation of two other wild diploid species Musa schizocarpa and Musa textilis was also indicated by molecular studies. The fusion of gametes with structurally different chromosome sets may give rise to progenies with structural chromosome heterozygosity and reduced fertility due to aberrant chromosome pairing and unbalanced chromosome segregation. Only a few translocations have been classified on the genomic level so far, and a comprehensive molecular cytogenetic characterization of cultivars and species of the family Musaceae is still lacking. Fluorescence in situ hybridization (FISH) with chromosome-arm-specific oligo painting probes was used for comparative karyotype analysis in a set of wild Musa species and edible banana clones. The results revealed large differences in chromosome structure, discriminating individual accessions. These results permitted the identification of putative progenitors of cultivated clones and clarified the genomic constitution and evolution of aneuploid banana clones, which seem to be common among the polyploid banana accessions. New insights into the chromosome organization and structural chromosome changes will be a valuable asset in breeding programs, particularly in the selection of appropriate parents for cross hybridization.
- Klíčová slova
- chromosome translocation, fluorescence in situ hybridization, karyotype evolution, oligo painting FISH, structural chromosome heterozygosity,
- MeSH
- banánovník genetika růst a vývoj MeSH
- chromozomy rostlin genetika MeSH
- diploidie MeSH
- karyotyp MeSH
- malování chromozomů metody MeSH
- molekulární evoluce MeSH
- šlechtění rostlin MeSH
- tetraploidie MeSH
- translokace genetická MeSH
- triploidie MeSH
- zemědělské plodiny genetika růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
East African highland bananas (EAHBs) are staple food crop in Uganda, Tanzania, Burundi, and other countries in the African Great Lakes region. Even though several morphologically different types exist, all EAHBs are triploid and display minimal genetic variation. To provide more insights into the genetic variation within EAHBs, genotyping using simple sequence repeat (SSR) markers, molecular analysis of ITS1-5.8S-ITS2 region of ribosomal DNA locus, and the analysis of chromosomal distribution of ribosomal DNA sequences were done. A total of 38 triploid EAHB accessions available in the Musa germplasm collection (International Transit Centre, Leuven, Belgium) were characterized. Six diploid accessions of Musa acuminata ssp. zebrina, ssp. banksii, and ssp. malaccensis representing putative parents of EAHBs were included in the study. Flow cytometric estimation of 2C nuclear DNA content revealed small differences (max ~6.5%) in genome size among the EAHB clones. While no differences in the number of 45S and 5S rDNA loci were found, genotyping using 19 SSR markers resulted in grouping the EAHB accessions into four clusters. The DNA sequence analysis of the internal transcribed spacer region indicated a relation of EAHB clones with M. acuminata and, surprisingly, also with M. schizocarpa. The results suggest that EAHB cultivars originated from a single hybrid clone with M. acuminata ssp. zebrina and ssp. banksii being its most probable parents. However, M. schizocarpa seems to have contributed to the formation of this group of banana.
- Klíčová slova
- East African highland bananas, ITS phylogeny, Musa, fluorescence in situ hybridization (FISH), rRNA genes, simple sequence repeats genotyping,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Dessert and cooking bananas are vegetatively propagated crops of great importance for both the subsistence and the livelihood of people in developing countries. A wide diversity of diploid and triploid cultivars including AA, AB, AS, AT, AAA, AAB, ABB, AAS and AAT genomic constitutions exists. Within each of this genome groups, cultivars are classified into subgroups that are reported to correspond to varieties clonally derived from each other after a single sexual event. The number of those founding events at the basis of the diversity of bananas is a matter of debate. METHODS: We analysed a large panel of 575 accessions, 94 wild relatives and 481 cultivated accessions belonging to the section Musa with a set of 498 DArT markers previously developed. KEY RESULTS: DArT appeared successful and accurate to describe Musa diversity and help in the resolution of cultivated banana genome constitution and taxonomy, and highlighted discrepancies in the acknowledged classification of some accessions. This study also argues for at least two centres of domestication corresponding to South-East Asia and New Guinea, respectively. Banana domestication in New Guinea probably followed different schemes that those previously reported where hybridization underpins the emergence of edible banana. In addition, our results suggest that not all wild ancestors of bananas are known, especially in M. acuminata subspecies. We also estimate the extent of the two consecutive bottlenecks in edible bananas by evaluating the number of sexual founding events underlying our sets of edible diploids and triploids, respectively. CONCLUSIONS: The attribution of clone identity to each sample of the sets allowed the detection of subgroups represented by several sets of clones. Although morphological characterization of some of the accessions is needed to correct potentially erroneous classifications, some of the subgroups seem polyclonal.
- Klíčová slova
- DArT, Musa acuminata, Musa balbisiana, Musa spp., banana, classification, domestication, taxonomy,
- MeSH
- banánovník klasifikace genetika MeSH
- biodiverzita MeSH
- biologická evoluce MeSH
- DNA rostlinná genetika izolace a purifikace MeSH
- genetické markery genetika MeSH
- genom rostlinný genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- genetické markery MeSH
The production of bananas is threatened by rapid spreading of various diseases and adverse environmental conditions. The preservation and characterization of banana diversity is essential for the purposes of crop improvement. The world's largest banana germplasm collection maintained at the Bioversity International Transit Centre (ITC) in Belgium is continuously expanded by new accessions of edible cultivars and wild species. Detailed morphological and molecular characterization of the accessions is necessary for efficient management of the collection and utilization of banana diversity. In this work, nuclear DNA content and genomic distribution of 45S and 5S rDNA were examined in 21 diploid accessions recently added to ITC collection, representing both sections of the genus Musa. 2C DNA content in the section Musa ranged from 1.217 to 1.315 pg. Species belonging to section Callimusa had 2C DNA contents ranging from 1.390 to 1.772 pg. While the number of 45S rDNA loci was conserved in the section Musa, it was highly variable in Callimusa species. 5S rRNA gene clusters were found on two to eight chromosomes per diploid cell. The accessions were genotyped using a set of 19 microsatellite markers to establish their relationships with the remaining accessions held at ITC. Genetic diversity done by SSR genotyping platform was extended by phylogenetic analysis of ITS region. ITS sequence data supported the clustering obtained by SSR analysis for most of the accessions. High level of nucleotide diversity and presence of more than two types of ITS sequences in eight wild diploids pointed to their origin by hybridization of different genotypes. This study significantly expands the number of wild Musa species where nuclear genome size and genomic distribution of rDNA loci is known. SSR genotyping identified Musa species that are closely related to the previously characterized accessions and provided data to aid in their classification. Sequence analysis of ITS region provided further information about evolutionary relationships between individual accessions and suggested that some of analyzed accessions were interspecific hybrids and/or backcross progeny.
- MeSH
- banánovník genetika MeSH
- buněčné jádro genetika MeSH
- chromozomy rostlin genetika MeSH
- cytogenetické vyšetření * MeSH
- délka genomu MeSH
- DNA rostlinná genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genotyp MeSH
- hybridizace in situ fluorescenční MeSH
- intergenová DNA genetika MeSH
- mikrosatelitní repetice genetika MeSH
- průtoková cytometrie MeSH
- pseudogeny genetika MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- intergenová DNA MeSH
- ribozomální DNA MeSH
- RNA ribozomální MeSH
BACKGROUND: The banana family (Musaceae) includes genetically a diverse group of species and their diploid and polyploid hybrids that are widely cultivated in the tropics. In spite of their socio-economic importance, the knowledge of Musaceae genomes is basically limited to draft genome assemblies of two species, Musa acuminata and M. balbisiana. Here we aimed to complement this information by analyzing repetitive genome fractions of six species selected to represent various phylogenetic groups within the family. RESULTS: Low-pass sequencing of M. acuminata, M. ornata, M. textilis, M. beccarii, M. balbisiana, and Ensete gilletii genomes was performed using a 454/Roche platform. Sequence reads were subjected to analysis of their overall intra- and inter-specific similarities and, all major repeat families were quantified using graph-based clustering. Maximus/SIRE and Angela lineages of Ty1/copia long terminal repeat (LTR) retrotransposons and the chromovirus lineage of Ty3/gypsy elements were found to make up most of highly repetitive DNA in all species (14-34.5% of the genome). However, there were quantitative differences and sequence variations detected for classified repeat families as well as for the bulk of total repetitive DNA. These differences were most pronounced between species from different taxonomic sections of the Musaceae family, whereas pairs of closely related species (M. acuminata/M. ornata and M. beccarii/M. textilis) shared similar populations of repetitive elements. CONCLUSIONS: This study provided the first insight into the composition and sequence variation of repetitive parts of Musaceae genomes. It allowed identification of repetitive sequences specific for a single species or a group of species that can be utilized as molecular markers in breeding programs and generated computational resources that will be instrumental in repeat masking and annotation in future genome assembly projects.
- MeSH
- banánovníkovité klasifikace genetika MeSH
- DNA rostlinná analýza genetika MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom rostlinný * MeSH
- molekulární evoluce MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- sekvenční analýza DNA MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
BACKGROUND AND AIMS: Bananas and plantains (Musa spp.) are one of the major fruit crops worldwide with acknowledged importance as a staple food for millions of people. The rich genetic diversity of this crop is, however, endangered by diseases, adverse environmental conditions and changed farming practices, and the need for its characterization and preservation is urgent. With the aim of providing a simple and robust approach for molecular characterization of Musa species, we developed an optimized genotyping platform using 19 published simple sequence repeat markers. METHODOLOGY: The genotyping system is based on 19 microsatellite loci, which are scored using fluorescently labelled primers and high-throughput capillary electrophoresis separation with high resolution. This genotyping platform was tested and optimized on a set of 70 diploid and 38 triploid banana accessions. PRINCIPAL RESULTS: The marker set used in this study provided enough polymorphism to discriminate between individual species, subspecies and subgroups of all accessions of Musa. Likewise, the capability of identifying duplicate samples was confirmed. Based on the results of a blind test, the genotyping system was confirmed to be suitable for characterization of unknown accessions. CONCLUSIONS: Here we report on the first complex and standardized platform for molecular characterization of Musa germplasm that is ready to use for the wider Musa research and breeding community. We believe that this genotyping system offers a versatile tool that can accommodate all possible requirements for characterizing Musa diversity, and is economical for samples ranging from one to many accessions.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The classification of the Musaceae (banana) family species and their phylogenetic inter-relationships remain controversial, in part due to limited nucleotide information to complement the morphological and physiological characters. In this work the evolutionary relationships within the Musaceae family were studied using 13 species and DNA sequences obtained from a set of 19 unlinked nuclear genes. RESULTS: The 19 gene sequences represented a sample of ~16 kb of genome sequence (~73% intronic). The sequence data were also used to obtain estimates for the divergence times of the Musaceae genera and Musa sections. Nucleotide variation within the sample confirmed the close relationship of Australimusa and Callimusa sections and showed that Eumusa and Rhodochlamys sections are not reciprocally monophyletic, which supports the previous claims for the merger between the two latter sections. Divergence time analysis supported the previous dating of the Musaceae crown age to the Cretaceous/Tertiary boundary (~ 69 Mya), and the evolution of Musa to ~50 Mya. The first estimates for the divergence times of the four Musa sections were also obtained. CONCLUSIONS: The gene sequence-based phylogeny presented here provides a substantial insight into the course of speciation within the Musaceae. An understanding of the main phylogenetic relationships between banana species will help to fine-tune the taxonomy of Musaceae.