Nejvíce citovaný článek - PubMed ID 21490082
For understanding the rules and laws of adaptive immunity, high-throughput profiling of T-cell receptor (TCR) repertoires becomes a powerful tool. The structure of TCR repertoires is instructive even before the antigen specificity of each particular receptor becomes available. It embodies information about the thymic and peripheral selection of T cells; the readiness of an adaptive immunity to withstand new challenges; the character, magnitude and memory of immune responses; and the aetiological and functional proximity of T-cell subsets. Here, we describe our current analytical approaches for the comparative analysis of murine TCR repertoires, and show several examples of how these approaches can be applied for particular experimental settings. We analyse the efficiency of different metrics used for estimation of repertoire diversity, repertoire overlap, V-gene and J-gene segments usage similarity, and amino acid composition of CDR3. We discuss basic differences of these metrics and their advantages and limitations in different experimental models, and we provide guidelines for choosing an efficient way to lead a comparative analysis of TCR repertoires. Applied to the various known and newly developed mouse models, such analysis should allow us to disentangle multiple sophisticated puzzles in adaptive immunity.
- Klíčová slova
- T cell, T-cell receptor repertoires, aging, diversity, functional T-cell subsets,
- MeSH
- buněčná imunita fyziologie MeSH
- hypervariabilní oblasti genetika imunologie MeSH
- myši MeSH
- T-lymfocyty - podskupiny cytologie imunologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- hypervariabilní oblasti MeSH
BACKGROUND: Recently we proposed efficient method to exclude undesirable primers at any stage of amplification reaction, here termed NOPE (NOnsense-mediated Primer Exclusion). According to this method, added oligonucleotide overlapping with the 3'-end of unwanted amplification primer (NOPE oligo) simultaneously provides a template for its elongation. This elongation disrupts specificity of unwanted primer, preventing its further participation in PCR. The suggested approach allows to rationally manage the course of PCR reactions in order to facilitate analysis of complex DNA mixtures as well as to perform multistage PCR bypassing intermediate purification steps. RESULTS: Here we apply NOPE method to DNA library preparation for the high-throughput sequencing (HTS) with the PCR-based introduction of unique molecular identifiers (UMI). We show that NOPE oligo efficiently neutralizes UMI-containing oligonucleotides after introduction of UMI into sample DNA molecules, thus allowing to proceed with further amplification steps without purification and associated loss of starting material. At the same time, NOPE oligo does not affect the efficiency of target PCR amplification. CONCLUSION: We describe a simple, robust and cheap modification of UMI-labeled HTS libraries preparation procedure, that allows to bypass purification step and thus to preserve starting material which may be limited, e.g. circulating tumor DNA, circulating fetal DNA, or small amounts of isolated cells of interest. Furthermore, demonstrated simplicity and robustness of NOPE method should make it popular in various PCR protocols.
- Klíčová slova
- High-throughput sequencing, PCR, Targeted resequencing, Unique molecular identifiers,
- MeSH
- DNA primery genetika MeSH
- erbB receptory genetika MeSH
- genová knihovna * MeSH
- polymerázová řetězová reakce metody MeSH
- sekvenční analýza DNA MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA primery MeSH
- erbB receptory MeSH
The accuracy with which DNA polymerase can replicate a template DNA sequence is an extremely important property that can vary by an order of magnitude from one enzyme to another. The rate of nucleotide misincorporation is shaped by multiple factors, including PCR conditions and proofreading capabilities, and proper assessment of polymerase error rate is essential for a wide range of sensitive PCR-based assays. In this paper, we describe a method for studying polymerase errors with exceptional resolution, which combines unique molecular identifier tagging and high-throughput sequencing. Our protocol is less laborious than commonly-used methods, and is also scalable, robust and accurate. In a series of nine PCR assays, we have measured a range of polymerase accuracies that is in line with previous observations. However, we were also able to comprehensively describe individual errors introduced by each polymerase after either 20 PCR cycles or a linear amplification, revealing specific substitution preferences and the diversity of PCR error frequency profiles. We also demonstrate that the detected high-frequency PCR errors are highly recurrent and that the position in the template sequence and polymerase-specific substitution preferences are among the major factors influencing the observed PCR error rate.
Unique molecular identifiers (UMIs) show outstanding performance in targeted high-throughput resequencing, being the most promising approach for the accurate identification of rare variants in complex DNA samples. This approach has application in multiple areas, including cancer diagnostics, thus demanding dedicated software and algorithms. Here we introduce MAGERI, a computational pipeline that efficiently handles all caveats of UMI-based analysis to obtain high-fidelity mutation profiles and call ultra-rare variants. Using an extensive set of benchmark datasets including gold-standard biological samples with known variant frequencies, cell-free DNA from tumor patient blood samples and publicly available UMI-encoded datasets we demonstrate that our method is both robust and efficient in calling rare variants. The versatility of our software is supported by accurate results obtained for both tumor DNA and viral RNA samples in datasets prepared using three different UMI-based protocols.
- MeSH
- databáze genetické MeSH
- lidé MeSH
- nádorové biomarkery krev genetika MeSH
- nádory genetika MeSH
- RNA virová genetika MeSH
- sekvenční analýza DNA metody MeSH
- sekvenční analýza RNA metody MeSH
- software * MeSH
- výpočetní biologie metody MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorové biomarkery MeSH
- RNA virová MeSH