Nejvíce citovaný článek - PubMed ID 21592357
On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae)
GBS read coverage analysis identified a Robertsonian chromosome from two Thinopyrum subgenomes in wheat, conferring leaf and stripe rust resistance, drought tolerance, and maintaining yield stability. Agropyron glael (GLAEL), a Thinopyrum intermedium × Th. ponticum hybrid, serves as a valuable genetic resource for wheat improvement. Despite its potential, limited knowledge of its chromosome structure and homoeologous relationships with hexaploid wheat (Triticum aestivum) has restricted the full exploitation of GLAEL's genetic diversity in breeding programs. Here, we present the development of a 44-chromosome wheat/GLAEL addition line (GLA7). Multicolor genomic in situ hybridization identified one chromosome arm from the St subgenome of Th. intermedium, while the other arm remained unclassified. Genotyping-by-sequencing (GBS) read coverage analysis revealed a unique Robertsonian translocation between two distinct Thinopyrum subgenomes, identified as 4StS·1JvsS. The GLA7 line demonstrated strong adult plant resistance to both leaf rust and stripe rust under natural and artificial infection conditions. Automated phenotyping of shoot morphological parameters together with leaf relative water content and yield components showed that the GLA7 line exhibited elevated drought tolerance compared to parental wheat genotypes. Three years of field trials showed that GLA7 exhibits similar agronomic performance and yield components to the wheat parents. This unique addition line holds promise for enhancing wheat's tolerance to multiple stresses through the introduction of new resistance genes, as well as its ability to mitigate the effects of temporary water limitation during flowering, all without negatively impacting wheat performance.
- MeSH
- Agropyron genetika MeSH
- chromozomy rostlin * genetika MeSH
- fenotyp MeSH
- fyziologický stres * genetika MeSH
- genotyp MeSH
- genotypizační techniky MeSH
- nemoci rostlin * mikrobiologie genetika MeSH
- období sucha MeSH
- odolnost vůči nemocem * genetika MeSH
- pšenice * genetika mikrobiologie růst a vývoj MeSH
- šlechtění rostlin MeSH
- translokace genetická * MeSH
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Tiller number is a key component of wheat plant architecture having a direct impact on grain yield. Because of their viability, biotic resistance, and abiotic stress tolerance, wild relative species are a valuable gene source for increasing wheat genetic diversity, including yield potential. Agropyron glael, a perennial hybrid of Thinopyrum intermedium and Th. ponticum, was created in the 1930s. Recent genome analyses identified five evolutionarily distinct subgenomes (J, Jst, Jvs, Jr, and St), making A. glael an important gene source for transferring useful agronomical traits into wheat. During a bread wheat × A. glael crossing program, a genetically stable translocation line, WT153397, was developed. Sequential in situ hybridizations (McGISH) with J-, St-, and D-genomic DNA probes and pSc119.2, Afa family, pTa71, and (GAA)7 DNA repeats, as well as molecular markers specific for the wheat 6D chromosome, revealed the presence of a 6DS.6Jvs Robertsonian translocation in the genetic line. Field trials in low-input and high-input breeding nurseries over four growing seasons demonstrated the Agropyron chromosome arm's high compensating ability for the missing 6DL, as spike morphology and fertility of WT153397 did not differ significantly from those of wheat parents, Mv9kr1 and 'Mv Karizma.' Moreover, the introgressed 6Jvs chromosome arm significantly increased the number of productive tillers, resulting in a significantly higher grain yield potential compared to the parental wheat cultivars. The translocated chromosome could be highly purified by flow cytometric sorting due to the intense fluorescent labeling of (GAA)7 clusters on the Thinopyrum chromosome arm, providing an opportunity to use chromosome genomics to identify Agropyron gene variant(s) responsible for the tillering capacity. The translocation line WT153397 is an important genetic stock for functional genetic studies of tiller formation and useful breeding material for increasing wheat yield potential. The study also discusses the use of the translocation line in wheat breeding. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11032-024-01439-y.
- Klíčová slova
- Agropyron glael, FISH, Flow cytometric sorting, GISH, Tillering, Yield potential,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Ribosomal DNA (rDNA) loci have been widely used for identification of allopolyploids and hybrids, although few of these studies employed high-throughput sequencing data. Here we use graph clustering implemented in the RepeatExplorer (RE) pipeline to analyze homoeologous 5S rDNA arrays at the genomic level searching for hybridogenic origin of species. Data were obtained from more than 80 plant species, including several well-defined allopolyploids and homoploid hybrids of different evolutionary ages and from widely dispersed taxonomic groups. RESULTS: (i) Diploids show simple circular-shaped graphs of their 5S rDNA clusters. In contrast, most allopolyploids and other interspecific hybrids exhibit more complex graphs composed of two or more interconnected loops representing intergenic spacers (IGS). (ii) There was a relationship between graph complexity and locus numbers. (iii) The sequences and lengths of the 5S rDNA units reconstituted in silico from k-mers were congruent with those experimentally determined. (iv) Three-genomic comparative cluster analysis of reads from allopolyploids and progenitor diploids allowed identification of homoeologous 5S rRNA gene families even in relatively ancient (c. 1 Myr) Gossypium and Brachypodium allopolyploids which already exhibit uniparental partial loss of rDNA repeats. (v) Finally, species harboring introgressed genomes exhibit exceptionally complex graph structures. CONCLUSION: We found that the cluster graph shapes and graph parameters (k-mer coverage scores and connected component index) well-reflect the organization and intragenomic homogeneity of 5S rDNA repeats. We propose that the analysis of 5S rDNA cluster graphs computed by the RE pipeline together with the cytogenetic analysis might be a reliable approach for the determination of the hybrid or allopolyploid plant species parentage and may also be useful for detecting historical introgression events.
- Klíčová slova
- 5S rRNA genes, allopolyploidy, evolution, graph structure clustering, high-throughput sequencing, hybridization, repeatome,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Interspecific hybridisation resulting in polyploidy is one of the major driving forces in plant evolution. Here, we present data from the molecular cytogenetic analysis of three cytotypes of Elytrigia ×mucronata using sequential fluorescence (5S rDNA, 18S rDNA and pSc119.2 probes) and genomic in situ hybridisation (four genomic probes of diploid taxa, i.e., Aegilops, Dasypyrum, Hordeum and Pseudoroegneria). RESULTS: The concurrent presence of Hordeum (descended from E. repens) and Dasypyrum + Aegilops (descended from E. intermedia) chromosome sets in all cytotypes of E. ×mucronata confirmed the assumed hybrid origin of the analysed plants. The following different genomic constitutions were observed for E. ×mucronata. Hexaploid plants exhibited three chromosome sets from Pseudoroegneria and one chromosome set each from Aegilops, Hordeum and Dasypyrum. Heptaploid plants harboured the six chromosome sets of the hexaploid plants and an additional Pseudoroegneria chromosome set. Nonaploid cytotypes differed in their genomic constitutions, reflecting different origins through the fusion of reduced and unreduced gametes. The hybridisation patterns of repetitive sequences (5S rDNA, 18S rDNA, and pSc119.2) in E. ×mucronata varied between and within cytotypes. Chromosome alterations that were not identified in the parental species were found in both heptaploid and some nonaploid plants. CONCLUSIONS: The results confirmed that both homoploid hybridisation and heteroploid hybridisation that lead to the coexistence of four different haplomes within single hybrid genomes occur in Elytrigia allopolyploids. The chromosomal alterations observed in both heptaploid and some nonaploid plants indicated that genome restructuring occurs during and/or after the hybrids arose. Moreover, a specific chromosomal translocation detected in one of the nonaploids indicated that it was not a primary hybrid. Therefore, at least some of the hybrids are fertile. Hybridisation in Triticeae allopolyploids clearly and significantly contributes to genomic diversity. Different combinations of parental haplomes coupled with chromosomal alterations may result in the establishment of unique lineages, thus providing raw material for selection.
- Klíčová slova
- Allopolyploidy, Chromosomal alterations, Elymus repens, FISH, GISH, Higher polyploids, Hybridisation, Thinopyrum intermedium,
- MeSH
- cytogenetické vyšetření MeSH
- DNA rostlinná analýza MeSH
- genotyp * MeSH
- hybridizace genetická * MeSH
- hybridizace in situ fluorescenční MeSH
- hybridizace in situ MeSH
- lipnicovité genetika MeSH
- polyploidie * MeSH
- RNA ribozomální 18S analýza MeSH
- RNA ribozomální 5S analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- DNA rostlinná MeSH
- RNA ribozomální 18S MeSH
- RNA ribozomální 5S MeSH
Osteoglossiformes represents one of the most ancestral teleost lineages, currently widespread over almost all continents, except for Antarctica. However, data involving advanced molecular cytogenetics or comparative genomics are yet largely limited for this fish group. Therefore, the present investigations focus on the osteoglossiform family Arapaimidae, studying a unique fish model group with advanced molecular cytogenetic genomic tools. The aim is to better explore and clarify certain events and factors that had impact on evolutionary history of this fish group. For that, both South American and African representatives of Arapaimidae, namely Arapaima gigas and Heterotis niloticus, were examined. Both species differed markedly by diploid chromosome numbers, with 2n = 56 found in A. gigas and 2n = 40 exhibited by H. niloticus. Conventional cytogenetics along with fluorescence in situ hybridization revealed some general trends shared by most osteoglossiform species analyzed thus far, such as the presence of only one chromosome pair bearing 18S and 5S rDNA sites and karyotypes dominated by acrocentric chromosomes, resembling thus the patterns of hypothetical ancestral teleost karyotype. Furthermore, the genomes of A. gigas and H. niloticus display remarkable divergence in terms of repetitive DNA content and distribution, as revealed by comparative genomic hybridization (CGH). On the other hand, genomic diversity of single copy sequences studied through principal component analyses (PCA) based on SNP alleles genotyped by the DArT seq procedure demonstrated a very low genetic distance between the South American and African Arapaimidae species; this pattern contrasts sharply with the scenario found in other osteoglossiform species. Underlying evolutionary mechanisms potentially explaining the obtained data have been suggested and discussed.
- MeSH
- biodiverzita * MeSH
- genom * MeSH
- jednonukleotidový polymorfismus * MeSH
- ribozomální DNA genetika MeSH
- ryby * klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Jihoafrická republika MeSH
- Názvy látek
- ribozomální DNA MeSH