Most cited article - PubMed ID 21854564
Secretory glands in cercaria of the neuropathogenic schistosome Trichobilharzia regenti - ultrastructural characterization, 3-D modelling, volume and pH estimations
Trichobilharzia species are parasitic flatworms (called schistosomes or flukes) that cause important diseases in birds and humans, but very little is known about their molecular biology. Here, using a transcriptomics-bioinformatics-based approach, we explored molecular aspects pertaining to the nutritional requirements of Trichobilharzia szidati ('visceral fluke') and T. regenti ('neurotropic fluke') in their avian host. We studied the larvae of each species before they enter (cercariae) and as they migrate (schistosomules) through distinct tissues in their avian (duck) host. Cercariae of both species were enriched for pathways or molecules associated predominantly with carbohydrate metabolism, oxidative phosphorylation and translation of proteins linked to ribosome biogenesis, exosome production and/or lipid biogenesis. Schistosomules of both species were enriched for pathways or molecules associated with processes including signal transduction, cell turnover and motility, DNA replication and repair, molecular transport and/or catabolism. Comparative informatic analyses identified molecular repertoires (within, e.g., peptidases and secretory proteins) in schistosomules that can broadly degrade macromolecules in both T. szidati and T. regenti, and others that are tailored to each species to selectively acquire nutrients from particular tissues through which it migrates. Thus, this study provides molecular evidence for distinct modes of nutrient acquisition between the visceral and neurotropic flukes of birds.
- MeSH
- Cercaria classification genetics pathogenicity MeSH
- DNA, Helminth classification genetics MeSH
- Phylogeny * MeSH
- Ducks genetics parasitology MeSH
- Humans MeSH
- Bird Diseases genetics parasitology MeSH
- Birds genetics parasitology MeSH
- Schistosomatidae genetics pathogenicity MeSH
- Schistosomiasis genetics parasitology MeSH
- Trematoda classification genetics pathogenicity MeSH
- Computational Biology MeSH
- Nutrients MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Helminth MeSH
Cercarial dermatitis (CD) is an allergic skin disease that rises in consequence of infection by invasive stages (cercariae) of trematodes of the family Schistosomatidae. CD has been considered a re-emerging disease, human cases have been reported from all continents, and tourism-threatening outbreaks occur even in frequented recreational areas. Although the symptoms of CD are generally known, the data on immune response in human patients are sporadic and incomprehensive. In the present study, we attempted to correlate the symptoms, personal history, and time course of CD in human patients with differential cell counts, dynamics of selected cytokines, and dynamics and quality of antibody response. By a systematic follow-up, we obtained a uniquely complex dataset from ten persons accidentally and concurrently infected by the same parasite species in the same locality. The onset of CD was significantly faster, and the symptoms were heavier in participants with a history of CD if compared to naive ones, who, however, also developed some of the symptoms. The repeatedly infected persons had elevated proportion of eosinophils 1 week post exposure (p.e.) and a stronger specific IgG but not IgM response, whereas specific IgE response was not observed. Increased serum levels of IL-4 occurred 1 and 3 week(s) p.e. in all participants. There was high variability in individual immunoblot patterns of IgG response, and no antigen with a universal diagnostic potential was confirmed. The presented analyses suggested that a complex approach can improve the accuracy of the diagnosis of CD, but component data should be interpreted carefully.
- Keywords
- Allergy, Diagnosis, Immunity, Schistosome, Skin, Trichobilharzia,
- MeSH
- Dermatitis immunology parasitology MeSH
- Adult MeSH
- Disease Outbreaks MeSH
- Immunoglobulin E blood MeSH
- Immunoglobulin G blood MeSH
- Immunoglobulin M blood MeSH
- Trematode Infections diagnosis immunology parasitology MeSH
- Interleukin-4 blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Follow-Up Studies MeSH
- Antibodies, Protozoan blood MeSH
- Surveys and Questionnaires MeSH
- Ponds parasitology MeSH
- Schistosomatidae immunology MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- IL4 protein, human MeSH Browser
- Immunoglobulin E MeSH
- Immunoglobulin G MeSH
- Immunoglobulin M MeSH
- Interleukin-4 MeSH
- Antibodies, Protozoan MeSH
The invasive larvae (cercariae) of schistosomes penetrate the skin of their definitive hosts. During the invasion, they undergo dramatic ultrastructural and physiological transitions. These changes result in the development of the subsequent stage, schistosomulum, which migrates through host tissues in close contact with host's immune system. One of the striking changes in the transforming cercariae is the shedding of their thick tegumental glycocalyx, which represents an immunoattractive structure; therefore its removal helps cercariae to avoid immune attack. A set of commercial fluorescently labeled lectin probes, their saccharide inhibitors and monoclonal antibodies against the trisaccharide Lewis-X antigen (LeX, CD15) were used to characterize changes in the surface saccharide composition of the neuropathogenic avian schistosome Trichobilharzia regenti during the transformation of cercariae to schistosomula, both in vitro and in vivo. The effect of various lectins on glycocalyx shedding was evaluated microscopically. The involvement of peptidases and their inhibitors on the shedding of glycocalyx was investigated using T. regenti recombinant cathepsin B2 and a set of peptidase inhibitors. The surface glycocalyx of T. regenti cercariae was rich in fucose and mannose/glucose residues. After the transformation of cercariae in vitro or in vivo within their specific duck host, reduction and vanishing of these epitopes was observed, and galactose/N-acetylgalactosamine emerged. The presence of LeX was not observed on the cercariae, but the antigen was gradually expressed from the anterior part of the body in the developing schistosomula. Some lectins which bind to the cercarial surface also induced secretion from the acetabular penetration glands. Seven lectins induced the shedding of glycocalyx by cercariae, among which five bound strongly to cercarial surface; the effect could be blocked by saccharide inhibitors. Mannose-binding protein, part of the lectin pathway of the complement system, also bound to cercariae and schistosomula, but had little effect on glycocalyx shedding. Our study did not confirm the involvement of proteolysis in glycocalyx shedding.
- MeSH
- Glycocalyx metabolism MeSH
- Glycosylation MeSH
- Schistosomatidae metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes) of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts' immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes.
- MeSH
- Adaptation, Biological * MeSH
- Host-Pathogen Interactions * MeSH
- Ducks parasitology MeSH
- Metabolic Networks and Pathways genetics MeSH
- Molecular Sequence Data MeSH
- Schistosomatidae genetics growth & development MeSH
- Sequence Analysis, DNA MeSH
- Life Cycle Stages MeSH
- Gene Expression Profiling * MeSH
- Computational Biology * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: The nasal avian schistosome Trichobilharzia regenti spends part of its intravertebrate period of life within the central nervous system. Migration of the parasites can be accompanied by neuromotor disorders or paralysis in natural definitive hosts (ducks) and even in laboratory mammals. Cercariae are also able to penetrate human skin and induce cercarial dermatitis. While the cellular and antibody responses against cercariae and migrating schistosomula have been investigated in mice, little is known about immune reactions in birds. This study first describes the dynamics of antibody response in infected ducks and identifies frequently recognized antigens that may serve as diagnostic markers of infection by T. regenti. METHODS: Groups of 35 domestic ducks and 10 mallards were exposed to different doses of T. regenti cercariae. Sera were collected at predefined time intervals and tested by ELISA for the presence of specific anti-cercarial IgY and IgM. Antigens recognized by the antibodies were identified on Western blots of cercariae and schistosomula. The applicability in immunodiagnostics was statistically evaluated by expression of specificity and sensitivity values for individual antigens. RESULTS: In ELISA, the levels of anti-cercarial IgM peaked on day 15 pi. Increased production of IgY associated with the later phases of infection was observed in most individuals around 20 dpi and culminated 30 dpi. The time course of antibody response did not differ among experimental groups, variations were only observed in the levels of specific IgY which depended rather on the age of ducks at the time of infection than on the infectious dose. On Western blots, 40 cercarial and 7 schistosomular antigens were recognized by IgY from infected ducks. Among them, 4 cercarial antigens of 50, 47, 32 and 19 kDa provided the most sensitive and specific reactions. CONCLUSIONS: Antigens of cercariae and schistosomula elicited distinct antibody response in ducks, which correlated positively with the age of animals at the time of infection. Several antigens originating in cercariae and fewer in schistosomula were recognized by IgY with diverse sensitivity and specificity; only a few seemed to be common to both stages. Four of them were considered as the most promising candidates for immunodiagnostics.
- MeSH
- Antigens, Helminth immunology MeSH
- Immunoglobulin M blood MeSH
- Immunoglobulins blood MeSH
- Trematode Infections blood immunology parasitology veterinary MeSH
- Ducks * MeSH
- Bird Diseases blood immunology parasitology MeSH
- Antibodies, Helminth blood MeSH
- Schistosomatidae * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, Helminth MeSH
- IgY MeSH Browser
- Immunoglobulin M MeSH
- Immunoglobulins MeSH
- Antibodies, Helminth MeSH
Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis.
- MeSH
- Biodiversity MeSH
- Disease Outbreaks MeSH
- Host Specificity MeSH
- Humans MeSH
- Bird Diseases parasitology transmission MeSH
- Skin Diseases, Parasitic epidemiology immunology parasitology prevention & control MeSH
- Birds MeSH
- Schistosomiasis epidemiology immunology parasitology prevention & control MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Bird schistosomes, besides being responsible for bird schistosomiasis, are known as causative agents of cercarial dermatitis. Cercarial dermatitis develops after repeated contact with cercariae, mainly of the genus Trichobilharzia, and was described as a type I, immediate hypersensitivity response, followed by a late phase reaction. The immune response is Th2 polarized. Primary infection leads to an inflammatory reaction that is insufficient to eliminate the schistosomes and schistosomula may continue its migration through the body of avian as well as mammalian hosts. However, reinfections of experimental mice revealed an immune reaction leading to destruction of the majority of schistosomula in the skin. Infection with the nasal schistosome Trichobilharzia regenti probably represents a higher health risk than infections with visceral schistosomes. After the skin penetration by the cercariae, parasites migrate via the peripheral nerves, spinal cord to the brain, and terminate their life cycle in the nasal mucosa of waterfowl where they lay eggs. T. regenti can also get over skin barrier and migrate to CNS of experimental mice. During heavy infections, neuroinfections of both birds and mammals lead to the development of a cellular immune response and axonal damage in the vicinity of the schistosomulum. Such infections are manifest by neuromotor disorders.
- Publication type
- Journal Article MeSH