Nejvíce citovaný článek - PubMed ID 21861450
Magnesium sulfate (MgSO₄) is a therapeutically versatile agent used across various medical conditions. This review integrates experimental and computational findings to elucidate the clinical, cellular, molecular, and electronic mechanisms underlying MgSO₄'s therapeutic effects, focusing on its antioxidant properties. MgSO₄ remains the gold standard treatment for preeclampsia and eclampsia, preventing seizures and mitigating oxidative damage. In preterm birth, it offers fetal neuroprotection, although its efficacy as a tocolytic agent is limited. MgSO₄ also shows promise in treating respiratory conditions, notably severe asthma, where it acts as a bronchodilator. Its applications extend to anesthesia, pain management, and cardiac arrhythmias, reflecting its diverse pharmacological actions. Advanced computational methods, including molecular dynamics simulations and quantum chemistry calculations, have revealed how MgSO₄ interacts with cell membranes and neutralizes hydroxyl radicals. These studies suggest that MgSO₄'s antioxidant effects stem from its ability to stabilize membrane structures and modulate electron transfer processes. The therapeutic effects are mediated through multiple pathways, including calcium channel modulation, NMDA receptor antagonism, and anti-inflammatory mechanisms. Although generally safe, MgSO₄ requires careful monitoring due to its narrow therapeutic window. Future research should focus on precision dosing strategies, innovative delivery systems, and expanded therapeutic applications. A comprehensive understanding of MgSO₄'s molecular mechanisms and clinical applications will further optimize its therapeutic use.
- Klíčová slova
- Magnesium sulfate, Molecular dynamics simulations, Molecular tools, Oxidative stress, Quantum chemistry calculations,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Silver nanoparticles (AgNPs) are excellent antimicrobial agents and promising candidates for preventing or treating bacterial infections caused by antibiotic resistant strains. However, their increasing use in commercial products raises concerns about their environmental impact. In addition, traditional physicochemical approaches often involve harmful agents and excessive energy consumption, resulting in AgNPs with short-term colloidal stability and silver ion leaching. To address these issues, we designed stable hybrid lignin-silver nanoparticles (AgLigNPs) intended to effectively hit bacterial envelopes as a main antimicrobial target. The lignin nanoparticles (LigNPs), serving as a reducing and stabilizing agent for AgNPs, have a median size of 256 nm and a circularity of 0.985. These LigNPs were prepared using the dialysis solvent exchange method, producing spherical particles stable under alkaline conditions and featuring reducing groups oriented toward a wrinkled surface, facilitating AgNPs synthesis and attachment. Maximum accumulation of silver on the LigNP surface was observed at a mass reaction ratio mAg:mLig of 0.25, at pH 11. The AgLigNPs completely inhibited suspension growth and reduced biofilm development by 50% in three tested strains of Pseudomonas aeruginosa at a concentration of 80/9.5 (lignin/silver) mg L-1. Compared to unattached AgNPs, AgLigNPs required two to eight times lower silver concentrations to achieve complete inhibition. Additionally, our silver-containing nanosystems were effective against bacteria at safe concentrations in HEK-293 and HaCaT tissue cultures. Stability experiments revealed that the nanosystems tend to aggregate in media used for bacterial cell cultures but remain stable in media used for tissue cultures. In all tested media, the nanoparticles retained their integrity, and the presence of lignin facilitated the prevention of silver ions from leaching. Overall, our data demonstrate the suitability of AgLigNPs for further valorization in the biomedical sector.
- Publikační typ
- časopisecké články MeSH
Neopterin is a biomarker of the activation of cellular immunity. The purpose of this review is to summarise neopterin metabolism, methods of its detection, and its role in inflammation, focusing on periodontal inflammatory diseases. This derivative of guanosine is a non-enzymatic product of 7,8-dihydroneopterin oxidation caused by free radicals which protect activated macrophages from oxidative stress. Various methods, usually based on enzyme-linked immunosorbent essay, high-performance liquid chromatography, or radioimmunoassay were developed for the isolation of neopterin. A wide spectrum of diseases and conditions are known to affect neopterin levels, including cardiovascular, bacterial, viral, and degenerative diseases, as well as malignant tumours. Neopterin levels were found to increase in subjects with periodontitis, especially when the oral fluid and gingival crevicular fluid were evaluated. These findings confirm the role of activated macrophages and cellular immunity in periodontal inflammatory diseases. The gingival crevicular fluid and the oral fluid appear to be the most valuable biologic fluids for the evaluation of neopterin levels in periodontitis. For gingival crevicular fluid, neopterin can be determined as the concentration or the so-called total amount. Nonsurgical periodontal treatment was associated with a decrease in neopterin levels, but an increase was also reported, suggesting the possible role of macrophages in the resolution of the periodontal lesion.
- Klíčová slova
- cellular immunity, inflammation, macrophages, neopterin, periodontitis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Reactive oxygen species (ROS) are formed in photosystem II (PSII) under various types of abiotic and biotic stresses. It is considered that ROS play a role in chloroplast-to-nucleus retrograde signaling, which changes the nuclear gene expression. However, as ROS lifetime and diffusion are restricted due to the high reactivity towards biomolecules (lipids, pigments, and proteins) and the spatial specificity of signal transduction is low, it is not entirely clear how ROS might transduce signal from the chloroplasts to the nucleus. Biomolecule oxidation was formerly connected solely with damage; nevertheless, the evidence appears that oxidatively modified lipids and pigments are be involved in chloroplast-to-nucleus retrograde signaling due to their long diffusion distance. Moreover, oxidatively modified proteins show high spatial specificity; however, their role in signal transduction from chloroplasts to the nucleus has not been proven yet. The review attempts to summarize and evaluate the evidence for the involvement of ROS in oxidative signaling in PSII.
- Klíčová slova
- Chloroplast-to-nucleus retrograde signaling, Lipid peroxidation, Protein oxidation, Reactive oxygen species,
- MeSH
- chloroplasty * metabolismus MeSH
- fotosystém II (proteinový komplex) * metabolismus MeSH
- lipidy MeSH
- oxidační stres MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fotosystém II (proteinový komplex) * MeSH
- lipidy MeSH
- reaktivní formy kyslíku MeSH
Health-threatening consequences of carcinogen exposure are mediated via occurrence of electrophiles or reactive oxygen species. As a result, the accumulation of biomolecular damage leads to the cancer initiation, promotion or progression. Accordingly, there is an association between lifestyle factors including inappropriate diet or carcinogen formation during food processing, mainstream, second or third-hand tobacco smoke and other environmental or occupational carcinogens and malignant transformation. Nevertheless, increasing evidence supports the protective effects of naturally occurring phytochemicals against carcinogen exposure as well as carcinogenesis in general. Isolated phytochemicals or their mixtures present in the whole plant food demonstrate efficacy against malignancy induced by carcinogens widely spread in our environment. Phytochemicals also minimize the generation of carcinogenic substances during the processing of meat and meat products. Based on numerous data, selected phytochemicals or plant foods should be highly recommended to become a stable and regular part of the diet as the protectors against carcinogenesis.
- Klíčová slova
- Antioxidant, Carcinogens, Chemoprevention, Detoxification, Dietary phytochemicals, Metabolic activation, Scavenging effect,
- MeSH
- antikarcinogenní látky farmakologie terapeutické užití MeSH
- fytonutrienty farmakologie terapeutické užití MeSH
- karcinogeneze účinky léků MeSH
- karcinogeny toxicita MeSH
- lidé MeSH
- potraviny škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antikarcinogenní látky MeSH
- fytonutrienty MeSH
- karcinogeny MeSH
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
- MeSH
- biologické modely * MeSH
- fosfolipidy chemie metabolismus MeSH
- kyseliny karboxylové chemie metabolismus MeSH
- lidé MeSH
- lipidomika metody MeSH
- membránové lipidy chemie metabolismus MeSH
- membrány chemie metabolismus fyziologie MeSH
- počítačová simulace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfolipidy MeSH
- kyseliny karboxylové MeSH
- membránové lipidy MeSH