Some medically important viruses-including retroviruses, flaviviruses, coronaviruses, and herpesviruses-code for a protease, which is indispensable for viral maturation and pathogenesis. Viral protease inhibitors have become an important class of antiviral drugs. Development of the first-in-class viral protease inhibitor saquinavir, which targets HIV protease, started a new era in the treatment of chronic viral diseases. Combining several drugs that target different steps of the viral life cycle enables use of lower doses of individual drugs (and thereby reduction of potential side effects, which frequently occur during long term therapy) and reduces drug-resistance development. Currently, several HIV and HCV protease inhibitors are routinely used in clinical practice. In addition, a drug including an inhibitor of SARS-CoV-2 main protease, nirmatrelvir (co-administered with a pharmacokinetic booster ritonavir as Paxlovid®), was recently authorized for emergency use. This review summarizes the basic features of the proteases of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and SARS-CoV-2 and discusses the properties of their inhibitors in clinical use, as well as development of compounds in the pipeline.
- MeSH
- antivirové látky farmakologie terapeutické užití MeSH
- COVID-19 * MeSH
- HIV infekce * farmakoterapie MeSH
- lidé MeSH
- SARS-CoV-2 MeSH
- virové proteasy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- nirmatrelvir and ritonavir drug combination MeSH Prohlížeč
- virové proteasy MeSH
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
- Klíčová slova
- Human Immunodeficiency Virus (HIV), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), activation, adenoviruses, autoprocessing, flaviviruses, herpesviruses, precursor, protease,
- MeSH
- antivirové látky farmakologie MeSH
- Flavivirus účinky léků metabolismus MeSH
- Herpesviridae účinky léků metabolismus MeSH
- HIV-1 účinky léků MeSH
- inhibitory virových proteáz farmakologie MeSH
- lidé MeSH
- lidské adenoviry účinky léků metabolismus MeSH
- SARS-CoV-2 účinky léků metabolismus MeSH
- virové nemoci farmakoterapie MeSH
- virové proteasy biosyntéza metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- inhibitory virových proteáz MeSH
- virové proteasy MeSH
High-pressure methods have become an interesting tool of investigation of structural stability of proteins. They are used to study protein unfolding, but dissociation of oligomeric proteins can be addressed this way, too. HIV-1 protease, although an interesting object of biophysical experiments, has not been studied at high pressure yet. In this study HIV-1 protease is investigated by high pressure (up to 600 MPa) fluorescence spectroscopy of either the inherent tryptophan residues or external 8-anilino-1-naphtalenesulfonic acid at 25°C. A fast concentration-dependent structural transition is detected that corresponds to the dimer-monomer equilibrium. This transition is followed by a slow concentration independent transition that can be assigned to the monomer unfolding. In the presence of a tight-binding inhibitor none of these transitions are observed, which confirms the stabilizing effect of inhibitor. High-pressure enzyme kinetics (up to 350 MPa) also reveals the stabilizing effect of substrate. Unfolding of the protease can thus proceed only from the monomeric state after dimer dissociation and is unfavourable at atmospheric pressure. Dimer-destabilizing effect of high pressure is caused by negative volume change of dimer dissociation of -32.5 mL/mol. It helps us to determine the atmospheric pressure dimerization constant of 0.92 μM. High-pressure methods thus enable the investigation of structural phenomena that are difficult or impossible to measure at atmospheric pressure.
- MeSH
- anilin-naftalen sulfonáty metabolismus MeSH
- atmosférický tlak MeSH
- darunavir metabolismus MeSH
- dimerizace MeSH
- fluorescenční spektrometrie MeSH
- HIV-proteasa chemie metabolismus MeSH
- inhibitory HIV-proteasy metabolismus MeSH
- kinetika MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- sbalování proteinů * MeSH
- stabilita proteinů účinky léků MeSH
- termodynamika MeSH
- tryptofan metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-anilino-8-naphthalenesulfonate MeSH Prohlížeč
- anilin-naftalen sulfonáty MeSH
- darunavir MeSH
- HIV-proteasa MeSH
- inhibitory HIV-proteasy MeSH
- p16 protease, Human immunodeficiency virus 1 MeSH Prohlížeč
- tryptofan MeSH
HIV protease (PR) is required for proteolytic maturation in the late phase of HIV replication and represents a prime therapeutic target. The regulation and kinetics of viral polyprotein processing and maturation are currently not understood in detail. Here we design, synthesize, validate and apply a potent, photodegradable HIV PR inhibitor to achieve synchronized induction of proteolysis. The compound exhibits subnanomolar inhibition in vitro. Its photolabile moiety is released on light irradiation, reducing the inhibitory potential by 4 orders of magnitude. We determine the structure of the PR-inhibitor complex, analyze its photolytic products, and show that the enzymatic activity of inhibited PR can be fully restored on inhibitor photolysis. We also demonstrate that proteolysis of immature HIV particles produced in the presence of the inhibitor can be rapidly triggered by light enabling thus to analyze the timing, regulation and spatial requirements of viral processing in real time.
- MeSH
- aminokumariny chemická syntéza farmakologie MeSH
- časové faktory MeSH
- fotolýza MeSH
- HEK293 buňky MeSH
- HIV-1 účinky léků fyziologie účinky záření MeSH
- HIV-proteasa chemie metabolismus MeSH
- inhibitory HIV-proteasy chemická syntéza farmakologie MeSH
- karbamáty chemická syntéza farmakologie MeSH
- kinetika MeSH
- lidé MeSH
- molekulární modely MeSH
- proteinové prekurzory antagonisté a inhibitory chemie metabolismus MeSH
- proteolýza účinky léků MeSH
- replikace viru MeSH
- světlo MeSH
- valin analogy a deriváty chemická syntéza farmakologie MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokumariny MeSH
- HIV-proteasa MeSH
- inhibitory HIV-proteasy MeSH
- karbamáty MeSH
- p55 gag precursor protein, Human immunodeficiency virus 1 MeSH Prohlížeč
- proteinové prekurzory MeSH
- thiazol-5-ylmethyl (5-(2-amino-3-methylbutanamido)-3-hydroxy-1,6-diphenylhexan-2-yl)carbamate MeSH Prohlížeč
- valin MeSH
UNLABELLED: HIV-1 assembles at the plasma membrane of virus-producing cells as an immature, noninfectious particle. Processing of the Gag and Gag-Pol polyproteins by the viral protease (PR) activates the viral enzymes and results in dramatic structural rearrangements within the virion--termed maturation--that are a prerequisite for infectivity. Despite its fundamental importance for viral replication, little is currently known about the regulation of proteolysis and about the dynamics and structural intermediates of maturation. This is due mainly to the fact that HIV-1 release and maturation occur asynchronously both at the level of individual cells and at the level of particle release from a single cell. Here, we report a method to synchronize HIV-1 proteolysis in vitro based on protease inhibitor (PI) washout from purified immature virions, thereby temporally uncoupling virus assembly and maturation. Drug washout resulted in the induction of proteolysis with cleavage efficiencies correlating with the off-rate of the respective PR-PI complex. Proteolysis of Gag was nearly complete and yielded the correct products with an optimal half-life (t(1/2)) of ~5 h, but viral infectivity was not recovered. Failure to gain infectivity following PI washout may be explained by the observed formation of aberrant viral capsids and/or by pronounced defects in processing of the reverse transcriptase (RT) heterodimer associated with a lack of RT activity. Based on our results, we hypothesize that both the polyprotein processing dynamics and the tight temporal coupling of immature particle assembly and PR activation are essential for correct polyprotein processing and morphological maturation and thus for HIV-1 infectivity. IMPORTANCE: Cleavage of the Gag and Gag-Pol HIV-1 polyproteins into their functional subunits by the viral protease activates the viral enzymes and causes major structural rearrangements essential for HIV-1 infectivity. This proteolytic maturation occurs concomitant with virus release, and investigation of its dynamics is hampered by the fact that virus populations in tissue culture contain particles at all stages of assembly and maturation. Here, we developed an inhibitor washout strategy to synchronize activation of protease in wild-type virus. We demonstrated that nearly complete Gag processing and resolution of the immature virus architecture are accomplished under optimized conditions. Nevertheless, most of the resulting particles displayed irregular morphologies, Gag-Pol processing was not faithfully reconstituted, and infectivity was not recovered. These data show that HIV-1 maturation is sensitive to the dynamics of processing and also that a tight temporal link between virus assembly and PR activation is required for correct polyprotein processing.
- MeSH
- HIV-1 fyziologie MeSH
- lidé MeSH
- posttranslační úpravy proteinů * MeSH
- proteiny viru HIV metabolismus MeSH
- proteolýza MeSH
- sestavení viru * MeSH
- uvolnění viru z buňky * MeSH
- virologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny viru HIV MeSH
In addition to its well-characterized role in the central nervous system, human glutamate carboxypeptidase II (GCPII; Uniprot ID Q04609) acts as a folate hydrolase in the small intestine, participating in the absorption of dietary polyglutamylated folates (folyl-n-γ-l-glutamic acid), which are the provitamin form of folic acid (also known as vitamin B9 ). Despite the role of GCPII as a folate hydrolase, nothing is known about the processing of polyglutamylated folates by GCPII at the structural or enzymological level. Moreover, many epidemiologic studies on the relationship of the naturally occurring His475Tyr polymorphism to folic acid status suggest that this polymorphism may be associated with several pathologies linked to impaired folate metabolism. In the present study, we report: (a) a series X-ray structures of complexes between a catalytically inactive GCPII mutant (Glu424Ala) and a panel of naturally occurring polyglutamylated folates; (b) the X-ray structure of the His475Tyr variant at a resolution of 1.83 Å; (c) the study of the recently identified arene-binding site of GCPII through mutagenesis (Arg463Leu, Arg511Leu and Trp541Ala), inhibitor binding and enzyme kinetics with polyglutamylated folates as substrates; and (d) a comparison of the thermal stabilities and folate-hydrolyzing activities of GCPII wild-type and His475Tyr variants. As a result, the crystallographic data reveal considerable details about the binding mode of polyglutamylated folates to GCPII, especially the engagement of the arene binding site in recognizing the folic acid moiety. Additionally, the combined structural and kinetic data suggest that GCPII wild-type and His475Tyr variant are functionally identical.
- Klíčová slova
- H475Y(1561C→T) polymorphism, arene-binding site, crystal structure, folate hydrolase 1, zinc metalloprotease,
- MeSH
- antigeny povrchové chemie genetika MeSH
- glutamátkarboxypeptidasa II chemie genetika MeSH
- kinetika MeSH
- krystalografie rentgenová MeSH
- kyselina polyglutamová chemie metabolismus MeSH
- lidé MeSH
- molekulární modely MeSH
- polymorfismus genetický MeSH
- stabilita enzymů MeSH
- vazebná místa genetika MeSH
- vysoká teplota MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- antigeny povrchové MeSH
- FOLH1 protein, human MeSH Prohlížeč
- folyl-n-gamma-L-glutamic acid MeSH Prohlížeč
- glutamátkarboxypeptidasa II MeSH
- kyselina polyglutamová MeSH
Insertions in the protease (PR) region of human immunodeficiency virus (HIV) represent an interesting mechanism of antiviral resistance against HIV PR inhibitors (PIs). Here, we demonstrate the improved ability of a phosphonate-containing experimental HIV PI, GS-8374, relative to that of other PIs, to effectively inhibit patient-derived recombinant HIV strains bearing PR insertions and numerous other mutations. We correlate enzyme inhibition with the catalytic activities of corresponding recombinant PRs in vitro and provide a biochemical and structural analysis of the PR-inhibitor complex.
- MeSH
- HIV infekce farmakoterapie virologie MeSH
- HIV-1 chemie účinky léků enzymologie genetika MeSH
- HIV-proteasa chemie genetika metabolismus MeSH
- inhibitory HIV-proteasy chemie farmakologie MeSH
- inzerční mutageneze * MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- organofosfonáty analýza MeSH
- sekvence aminokyselin MeSH
- vazebná místa MeSH
- virová léková rezistence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- HIV-proteasa MeSH
- inhibitory HIV-proteasy MeSH
- organofosfonáty MeSH
- p16 protease, Human immunodeficiency virus 1 MeSH Prohlížeč