Nejvíce citovaný článek - PubMed ID 22182933
Characterization of new stable ghrelin analogs with prolonged orexigenic potency
The preparation of specifically iodine-125 (125I)-labeled peptides of high purity and specific activity represents a key tool for the detailed characterization of their binding properties in interaction with their binding partners. Early synthetic methods for the incorporation of iodine faced challenges such as harsh reaction conditions, the use of strong oxidants and low reproducibility. Herein, we review well-established radiolabeling strategies available to incorporate radionuclide into a protein of interest, and our long-term experience with a mild, simple and generally applicable technique of 125I late-stage-labeling of biomolecules using the Pierce iodination reagent for the direct solid-phase oxidation of radioactive iodide. General recommendations, tips, and details of optimized chromatographic conditions to isolate pure, specifically 125I-mono-labeled biomolecules are illustrated on a diverse series of (poly)peptides, ranging up to 7.6 kDa and 67 amino acids (aa). These series include peptides that contain at least one tyrosine or histidine residue, along with those featuring disulfide crosslinking or lipophilic derivatization. This mild and straightforward late-stage-labeling technique is easily applicable to longer and more sensitive proteins, as demonstrated in the cases of the insulin-like growth factor binding protein-3 (IGF-BP-3) (29 kDa and 264 aa) and the acid-labile subunit (ALS) (93 kDa and 578 aa).
Alzheimer's disease (AD) is the most common form of dementia. Characterized by progressive neurodegeneration, AD typically begins with mild cognitive decline escalating to severe impairment in communication and responsiveness. It primarily affects cerebral regions responsible for cognition, memory, and language processing, significantly impeding the functional independence of patients. With nearly 50 million dementia cases worldwide, a number expected to triple by 2050, the need for effective treatments is more urgent than ever. Recent insights into the association between obesity, type 2 diabetes mellitus, and neurodegenerative disorders have led to the development of promising treatments involving antidiabetic and anti-obesity agents. One such novel promising candidate for addressing AD pathology is a lipidized analogue of anorexigenic peptide called prolactin-releasing peptide (palm11-PrRP31). Interestingly, anorexigenic and orexigenic peptides have opposite effects on food intake regulation, however, both types exhibit neuroprotective properties. Recent studies have also identified ghrelin, an orexigenic peptide, as a potential neuroprotective agent. Hence, we employed both anorexigenic and orexigenic compounds to investigate the common mechanisms underpinning their neuroprotective effects in a triple transgenic mouse model of AD (3xTg-AD mouse model) combining amyloid-beta (Aβ) pathology and Tau pathology, two hallmarks of AD. We treated 3xTg-AD mice for 4 months with two stable lipidized anorexigenic peptide analogues - palm11-PrRP31, and liraglutide, a glucagon-like peptide 1 (GLP-1) analogue - as well as Dpr3-ghrelin, a stable analogue of the orexigenic peptide ghrelin, and using the method of immunohistochemistry and western blot demonstrate the effects of these compounds on the development of AD-like pathology in the brain. Palm11-PrRP31, Dpr3-ghrelin, and liraglutide reduced intraneuronal deposits of Aβ plaque load in the hippocampi and amygdalae of 3xTg-AD mice. Palm11-PrRP31 and Dpr3-ghrelin reduced microgliosis in the hippocampi, amygdalae, and cortices of 3xTg-AD mice. Palm11-PrRP31 and liraglutide reduced astrocytosis in the amygdalae of 3xTg-AD mice. We propose that these peptides are involved in reducing inflammation, a common mechanism underlying their therapeutic effects. This is the first study to demonstrate improvements in AD pathology following the administration of both orexigenic and anorexigenic compounds, highlighting the therapeutic potential of food intake-regulating peptides in neurodegenerative disorders.
- Klíčová slova
- 3xTg-AD mice, Alzheimer’s disease, Anorexigenic peptide analogues, Neuroinflammation, Orexigenic peptide analogues,
- MeSH
- Alzheimerova nemoc * farmakoterapie patologie genetika metabolismus MeSH
- ghrelin * farmakologie terapeutické užití MeSH
- hormon uvolňující prolaktin * farmakologie terapeutické užití analogy a deriváty MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- neurozánětlivé nemoci * farmakoterapie patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ghrelin * MeSH
- hormon uvolňující prolaktin * MeSH
Peptides, as potential therapeutics continue to gain importance in the search for active substances for the treatment of numerous human diseases, some of which are, to this day, incurable. As potential therapeutic drugs, peptides have many favorable chemical and pharmacological properties, starting with their great diversity, through their high affinity for binding to all sort of natural receptors, and ending with the various pathways of their breakdown, which produces nothing but amino acids that are nontoxic to the body. Despite these and other advantages, however, they also have their pitfalls. One of these disadvantages is the very low stability of natural peptides. They have a short half-life and tend to be cleared from the organism very quickly. Their instability in the gastrointestinal tract, makes it impossible to administer peptidic drugs orally. To achieve the best pharmacologic effect, it is desirable to look for ways of modifying peptides that enable the use of these substances as pharmaceuticals. There are many ways to modify peptides. Herein we summarize the approaches that are currently in use, including lipidization, PEGylation, glycosylation and others, focusing on lipidization. We describe how individual types of lipidization are achieved and describe their advantages and drawbacks. Peptide modifications are performed with the goal of reaching a longer half-life, reducing immunogenicity and improving bioavailability. In the case of neuropeptides, lipidization aids their activity in the central nervous system after the peripheral administration. At the end of our review, we summarize all lipidized peptide-based drugs that are currently on the market.
- Klíčová slova
- Peptide therapeutics, lipidization, structure modification, therapeutic lipopeptides,
- MeSH
- lipidy * chemie MeSH
- peptidy * chemie terapeutické užití MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- lipidy * MeSH
- peptidy * MeSH
Recent data suggest that the orexigenic peptide ghrelin and liver-expressed antimicrobial peptide 2 (LEAP2) have opposing effects on food intake regulation. Although circulating ghrelin is decreased in obesity, peripheral ghrelin administration does not induce food intake in obese mice. Limited information is available on ghrelin resistance in relation to LEAP2. In this study, the interplay between ghrelin and LEAP2 in obesity induced by a high-fat (HF) diet in mice was studied. First, the progression of obesity and intolerance to glucose together with plasma levels of active and total ghrelin, leptin, as well as liver LEAP2 mRNA expression at different time points of HF diet feeding was examined. In addition, the impact of switch from a HF diet to a standard diet on plasma ghrelin and LEAP2 production was studied. Second, sensitivity to the stable ghrelin analogue [Dpr3]Ghrelin or our novel LEAP2 analogue palm-LEAP2(1-14) during the progression of HF diet-induced obesity and after the switch for standard diet was investigated. Food intake was monitored after acute subcutaneous administration. HF diet feeding decreased both active and total plasma ghrelin and increased liver LEAP2 mRNA expression along with intolerance to glucose and the switch to a standard diet normalized liver LEAP2 mRNA expression and plasma level of active ghrelin, but not of total ghrelin. Additionally, our study demonstrates that a HF diet causes resistance to [Dpr3]Ghrelin, reversible by switch to St diet, followed by resistance to palm-LEAP2(1-14). Further studies are needed to determine the long-term effects of LEAP2 analogues on obesity-related ghrelin resistance.
- MeSH
- dieta s vysokým obsahem tuků * MeSH
- ghrelin * farmakologie MeSH
- glukosa MeSH
- messenger RNA MeSH
- myši MeSH
- obezita farmakoterapie MeSH
- receptory ghrelinu MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ghrelin * MeSH
- glukosa MeSH
- messenger RNA MeSH
- receptory ghrelinu MeSH
The anorexigenic neuropeptide prolactin-releasing peptide (PrRP) is involved in the regulation of food intake and energy expenditure. Lipidization of PrRP stabilizes the peptide, facilitates central effect after peripheral administration and increases its affinity for its receptor, GPR10, and for the neuropeptide FF (NPFF) receptor NPFF-R2. The two most potent palmitoylated analogs with anorectic effects in mice, palm11-PrRP31 and palm-PrRP31, were studied in vitro to determine their agonist/antagonist properties and mechanism of action on GPR10, NPFF-R2 and other potential off-target receptors related to energy homeostasis. Palmitoylation of both PrRP31 analogs increased the binding properties of PrRP31 to anorexigenic receptors GPR10 and NPFF-R2 and resulted in a high affinity for another NPFF receptor, NPFF-R1. Moreover, in CHO-K1 cells expressing GPR10, NPFF-R2 or NPFF-R1, palm11-PrRP and palm-PrRP significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt) and cAMP-responsive element-binding protein (CREB). Palm11-PrRP31, unlike palm-PrRP31, did not activate either c-Jun N-terminal kinase (JNK), p38, c-Jun, c-Fos or CREB pathways in cells expressing NPFF-1R. Palm-PrRP31 also has higher binding affinities for off-target receptors, namely, the ghrelin, opioid (KOR, MOR, DOR and OPR-L1) and neuropeptide Y (Y1, Y2 and Y5) receptors. Palm11-PrRP31 exhibited fewer off-target activities; therefore, it has a higher potential to be used as an anti-obesity drug with anorectic effects.
- Klíčová slova
- GPR10, NPFF-R1, NPFF-R2, binding properties, neuropeptide FF, prolactin-releasing peptide, signaling pathways,
- MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- hormon uvolňující prolaktin chemie genetika metabolismus MeSH
- křečci praví MeSH
- lidé MeSH
- lipoylace * MeSH
- receptory neuropeptidů genetika metabolismus MeSH
- receptory spřažené s G-proteiny genetika metabolismus MeSH
- techniky in vitro MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hormon uvolňující prolaktin MeSH
- neuropeptide FF receptor MeSH Prohlížeč
- PRLH protein, human MeSH Prohlížeč
- PRLHR protein, human MeSH Prohlížeč
- receptory neuropeptidů MeSH
- receptory spřažené s G-proteiny MeSH
- vápník MeSH
Obesity, diabetes, insulin resistance, sedentary lifestyle, and Western diet are the key factors underlying non-alcoholic fatty liver disease (NAFLD), one of the most common liver diseases in developed countries. In many cases, NAFLD further progresses to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and to hepatocellular carcinoma. The hepatic lipotoxicity and non-liver factors, such as adipose tissue inflammation and gastrointestinal imbalances were linked to evolution of NAFLD. Nowadays, the degree of adipose tissue inflammation was shown to directly correlate with the severity of NAFLD. Consumption of higher caloric intake is increasingly emerging as a fuel of metabolic inflammation not only in obesity-related disorders but also NAFLD. However, multiple causes of NAFLD are the reason why the mechanisms of NAFLD progression to NASH are still not well understood. In this review, we explore the role of food intake regulating peptides in NAFLD and NASH mouse models. Leptin, an anorexigenic peptide, is involved in hepatic metabolism, and has an effect on NAFLD experimental models. Glucagon-like peptide-1 (GLP-1), another anorexigenic peptide, and GLP-1 receptor agonists (GLP-1R), represent potential therapeutic agents to prevent NAFLD progression to NASH. On the other hand, the deletion of ghrelin, an orexigenic peptide, prevents age-associated hepatic steatosis in mice. Because of the increasing incidence of NAFLD and NASH worldwide, the selection of appropriate animal models is important to clarify aspects of pathogenesis and progression in this field.
- Klíčová slova
- ghrelin, glucagon-like peptide-1, leptin, non-alcoholic steatohepatitis, peptides,
- MeSH
- hypoglykemika farmakologie MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- nealkoholová steatóza jater farmakoterapie etiologie patofyziologie MeSH
- peptidové fragmenty farmakologie MeSH
- přijímání potravy * MeSH
- progrese nemoci MeSH
- regulace chuti k jídlu účinky léků MeSH
- zánět komplikace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- hypoglykemika MeSH
- peptidové fragmenty MeSH
Analogs of anorexigenic neuropeptides, such as prolactin-releasing peptide (PrRP), have a potential as new anti-obesity drugs. In our previous study, palmitic acid attached to the N-terminus of PrRP enabled its central anorexigenic effects after peripheral administration. In this study, two linkers, γ-glutamic acid at Lys11 and a short, modified polyethylene glycol at the N-terminal Ser and/or Lys11, were applied for the palmitoylation of PrRP31 to improve its bioavailability. These analogs had a high affinity and activation ability to the PrRP receptor GPR10 and the neuropeptide FF2 receptor, as well as short-term anorexigenic effect similar to PrRP palmitoylated at the N-terminus. Two-week treatment with analogs that were palmitoylated through linkers to Lys11 (analogs 1 and 2), but not with analog modified both at the N-terminus and Lys11 (analog 3) decreased body and liver weights, insulin, leptin, triglyceride, cholesterol and free fatty acid plasma levels in a mouse model of diet-induced obesity. Moreover, the expression of uncoupling protein-1 was increased in brown fat suggesting an increase in energy expenditure. In addition, treatment with analogs 1 and 2 but not analog 3 significantly decreased urinary concentrations of 1-methylnicotinamide and its oxidation products N-methyl-2-pyridone-5-carboxamide and N-methyl-4-pyridone-3-carboxamide, as shown by NMR-based metabolomics. This observation confirmed the previously reported increase in nicotinamide derivatives in obesity and type 2 diabetes mellitus and the effectiveness of analogs 1 and 2 in the treatment of these disorders.
- MeSH
- beta-laktamasy metabolismus MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- dieta * MeSH
- hormon uvolňující prolaktin chemie metabolismus MeSH
- kompetitivní vazba MeSH
- křečci praví MeSH
- metabolomika MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- obezita etiologie metabolismus MeSH
- peptidy chemie farmakologie MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-laktamasy MeSH
- hormon uvolňující prolaktin MeSH
- peptidy MeSH
OBJECTIVES: Obesity is a frequent metabolic disorder but an effective therapy is still scarce. Anorexigenic neuropeptides produced and acting in the brain have the potential to decrease food intake and ameliorate obesity but are ineffective after peripheral application. We have designed lipidized analogs of prolactin-releasing peptide (PrRP), which is involved in energy balance regulation as demonstrated by obesity phenotypes of both PrRP- and PrRP-receptor-knockout mice. RESULTS: Lipidized PrRP analogs showed binding affinity and signaling in PrRP receptor-expressing cells similar to natural PrRP. Moreover, these analogs showed high binding affinity also to anorexigenic neuropeptide FF-2 receptor. Peripheral administration of myristoylated and palmitoylated PrRP analogs to fasted mice induced strong and long-lasting anorexigenic effects and neuronal activation in the brain areas involved in food intake regulation. Two-week-long subcutaneous administration of palmitoylated PrRP31 and myristoylated PrRP20 lowered food intake, body weight and improved metabolic parameters, and attenuated lipogenesis in mice with diet-induced obesity. CONCLUSIONS: Our data suggest that the lipidization of PrRP enhances stability and mediates its effect in central nervous system. Strong anorexigenic and body-weight-reducing effects make lipidized PrRP an attractive candidate for anti-obesity treatment.
- MeSH
- energetický metabolismus MeSH
- hormon uvolňující prolaktin analogy a deriváty farmakologie MeSH
- látky proti obezitě farmakologie MeSH
- lipidy chemie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- obezita prevence a kontrola MeSH
- poločas MeSH
- přijímání potravy MeSH
- regulace chuti k jídlu MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hormon uvolňující prolaktin MeSH
- látky proti obezitě MeSH
- lipidy MeSH