Nejvíce citovaný článek - PubMed ID 22375253
Metallothioneins (MTs) are small cysteine-rich intracellular proteins. The best-known biological functions of MTs are sequestration of metal ions and maintenance of redox homeostasis. Despite these protective functions, it has been demonstrated that MTs are involved in tumorigenesis, cellular differentiation, drug resistance, and metabolic disorders such as diabetes and obesity, in which MTs expression is substantially deregulated in adipose tissue. In addition, many studies have experimentally evidenced a possible role of MTs in the development of diabetes. Given the rich biochemical properties of MTs, it can be concluded that they are involved in several aspects of development and progression of obesity and diabetes. Thus, evaluation of expression of MTs could serve as biomarker to personalize available therapeutic interventions and possibly to develop novel advanced therapeutic modalities. Overall, the purpose of this review is analyze and review the latest studies aimed on the multiple roles of MTs in metabolic disorders, possible use of MTs as obesity and diabetes biomarkers and the role of MTs in cardioprotection during diabetes progression.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This study aims to assess the phytochemical composition, antioxidant potential, and antidiabetic properties of Erigeron annuus (L.) Pers. The ethyl acetate fraction of Erigeron annuus leaves exhibited the highest extraction rate (22.42%). The preliminary qualitative phytochemical analysis in crude extract and fractions is often performed using chemical tests. For quantitative analysis, spectrophotometric methods are widely used to estimate the concentration of phytochemicals. The antioxidant properties were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay, which measures the reduction of Fe3+ to Fe2+. Qualitative screening revealed the presence of tannins, flavonoids, phenols, saponins, and alkaloids. Notably, the ethyl acetate fraction showed significantly (p < 0.05) higher total phenolic content (70.01 ± 1.1 mg/g) and total flavonoid content (80.29 ± 1.03 mg/g). This fraction also demonstrated substantial α-amylase inhibitory activity and antioxidant potential, suggesting the ability of polyphenols to reduce α-amylase activity. The α-amylase inhibition (23.15 ± 1.22% to 67.31 ± 2.01%) activity and IC50 value (40.59 ± 0.03 μg/mL) were notably higher in the ethyl acetate fraction compared with the standard drug metformin (19.88 ± 1.51 μg/mL). Erigeron annuus ethyl acetate fraction exhibited significantly higher glucose levels (10.88% ± 1.29% to 65.11 ± 0.94%) and conducted a lipid peroxidation experiment utilizing egg yolk as the source of lipids with high content. The most bioactive fraction was evaluated for cytotoxicity against the HEK293 cell line. The cytotoxicity assay revealed that 50% cell viability was observed at a concentration of 50 μg/mL, indicating that the plant extract is nontoxic at concentrations below this threshold. Furthermore, the dominant fraction was further investigated using liquid chromatography-mass spectroscopy and high-performance thin-layer chromatography techniques from the selected plant. Moreover, an in vivo study will be performed to evaluate the antidiabetic efficacy of Erigeron annuus, isolate and characterize its bioactive components, and examine its molecular mechanism of action to improve its therapeutic applicability.
- Klíčová slova
- Erigeron annuus, anti-inflammatory, anti-oxidant, cytotoxicity, phytochemical,
- MeSH
- alfa-amylasy antagonisté a inhibitory metabolismus MeSH
- antioxidancia * farmakologie chemie MeSH
- bifenylové sloučeniny chemie MeSH
- fenoly chemie MeSH
- flavonoidy chemie MeSH
- fytonutrienty * chemie farmakologie MeSH
- hypoglykemika * farmakologie chemie MeSH
- lidé MeSH
- listy rostlin chemie MeSH
- rostlinné extrakty * chemie farmakologie MeSH
- rozpouštědla * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alfa-amylasy MeSH
- antioxidancia * MeSH
- bifenylové sloučeniny MeSH
- fenoly MeSH
- flavonoidy MeSH
- fytonutrienty * MeSH
- hypoglykemika * MeSH
- rostlinné extrakty * MeSH
- rozpouštědla * MeSH
Crohn's disease and ulcerative colitis, known together as inflammatory bowel diseases (IBDs), and celiac disease are the most common disorders affecting not only adults but also children. Both IBDs and celiac disease are associated with oxidative stress, which may play a significant role in their etiologies. Reactive oxygen species (ROS) such as superoxide radicals (O2•-), hydroxyl radicals (•OH), hydrogen peroxide (H2O2), and singlet oxygen (1O2) are responsible for cell death via oxidation of DNA, proteins, lipids, and almost any other cellular constituent. To protect biological systems from free radical toxicity, several cellular antioxidant defense mechanisms exist to regulate the production of ROS, including enzymatic and nonenzymatic pathways. Superoxide dismutase catalyzes the dismutation of O2•- to H2O2 and oxygen. The glutathione redox cycle involves two enzymes: glutathione peroxidase, which uses glutathione to reduce organic peroxides and H2O2; and glutathione reductase, which reduces the oxidized form of glutathione with concomitant oxidation of nicotinamide adenine dinucleotide phosphate. In addition to this cycle, GSH can react directly with free radicals. Studies into the effects of free radicals and antioxidant status in patients with IBDs and celiac disease are scarce, especially in pediatric patients. It is therefore very necessary to conduct additional research studies to confirm previous data about ROS status and antioxidant activities in patients with IBDs and celiac disease, especially in children.
- Klíčová slova
- Crohn's disease, antioxidant enzymes, inflammatory bowel diseases, pediatric patients, radicals,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH