Most cited article - PubMed ID 22948490
EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols
- MeSH
- Leukemia, Myeloid, Acute * drug therapy MeSH
- CD28 Antigens MeSH
- CD3 Complex immunology MeSH
- ADP-ribosyl Cyclase 1 * antagonists & inhibitors metabolism MeSH
- Antibodies, Monoclonal, Humanized * therapeutic use MeSH
- Humans MeSH
- Membrane Glycoproteins MeSH
- Antibodies, Bispecific therapeutic use MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- T-Lymphocytes immunology metabolism MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- CD28 Antigens MeSH
- CD3 Complex MeSH
- ADP-ribosyl Cyclase 1 * MeSH
- CD38 protein, human MeSH Browser
- Antibodies, Monoclonal, Humanized * MeSH
- isatuximab MeSH Browser
- Membrane Glycoproteins MeSH
- Antibodies, Bispecific MeSH
Diagnostic criteria for juvenile myelomonocytic leukemia (JMML) are currently well defined, however in some patients diagnosis still remains a challenge. Flow cytometry is a well established tool for diagnosis and follow-up of hematological malignancies, nevertheless it is not routinely used for JMML diagnosis. Herewith, we characterized the CD34+ hematopoietic precursor cells collected from 31 children with JMML using a combination of standardized EuroFlow antibody panels to assess the ability to discriminate JMML cells from normal/reactive bone marrow cell as controls (n=29) or from cells of children with other hematological diseases mimicking JMML (n=9). CD34+ precursors in JMML showed markedly reduced B-cell and erythroid-committed precursors compared to controls, whereas monocytic and CD7+ lymphoid precursors were significantly expanded. Moreover, aberrant immunophenotypes were consistently present in CD34+ precursors in JMML, while they were virtually absent in controls. Multivariate logistic regression analysis showed that combined assessment of the number of CD34+CD7+ lymphoid precursors and CD34+ aberrant precursors or erythroid precursors had a great potential in discriminating JMMLs versus controls. Importantly our scoring model allowed highly efficient discrimination of truly JMML versus patients with JMML-like diseases. In conclusion, we show for the first time that CD34+ precursors from JMML patients display a unique immunophenotypic profile which might contribute to a fast and accurate diagnosis of JMML worldwide by applying an easy to standardize single eight-color antibody combination.
- MeSH
- Antigens, CD34 genetics MeSH
- Child MeSH
- Leukemia, Myelomonocytic, Juvenile * diagnosis genetics MeSH
- Humans MeSH
- Monocytes pathology MeSH
- Flow Cytometry MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, CD34 MeSH
The diagnosis of Waldenström's macroglobulinemia (WM), an IgM-associated lymphoplasmacytic lymphoma, can be challenging due to the different forms of disease presentation. Furthermore, in recent years, WM has witnessed remarkable progress on the diagnostic front, as well as a deeper understanding of the disease biology, which has affected clinical practice. This, together with the increasing variety of tools and techniques available, makes it necessary to have a practical guidance for clinicians to perform the initial evaluation of patients with WM. In this paper, we present the consensus recommendations and laboratory requirements for the diagnosis of WM developed by the European Consortium of Waldenström's Macroglobulinemia (ECWM), for both clinical practice as well as the research/academical setting. We provide the procedures for multiparametric flow cytometry, fluorescence in situ hybridization and molecular tests, and with this offer guidance for a standardized diagnostic work-up and methodological workflow of patients with IgM monoclonal gammopathy of uncertain significance, asymptomatic and symptomatic WM.
- MeSH
- In Situ Hybridization, Fluorescence MeSH
- Immunoglobulin M MeSH
- Humans MeSH
- Waldenstrom Macroglobulinemia * diagnosis MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Immunoglobulin M MeSH
Bordetella pertussis (Bp), the causative agent of pertussis, continues to circulate despite widespread vaccination programs. An important question is whether and how (sub)clinical infections shape immune memory to Bp, particularly in populations primed with acellular pertussis vaccines (aP). Here, we examine the prevalence of mucosal antibodies against non-vaccine antigens in aP-primed children and adolescents of the BERT study (NCT03697798), using antibody binding to a Bp mutant strain lacking aP antigens (Bp_mut). Our study identifies increased levels of mucosal IgG and IgA binding to Bp_mut in older aP-primed individuals, suggesting different Bp exposure between aP-primed birth cohorts, in line with pertussis disease incidence data. To examine whether Bp exposure influences vaccination responses, we measured mucosal antibody responses to aP booster vaccination as a secondary study outcome. Although booster vaccination induces significant increases in mucosal antibodies to Bp in both cohorts, the older age group that had higher baseline antibodies to Bp_ mut shows increased persistence of antibodies after vaccination.
- MeSH
- Antigens, Bacterial MeSH
- Bordetella pertussis * genetics MeSH
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Whooping Cough * prevention & control MeSH
- Antibodies MeSH
- Immunization, Secondary MeSH
- Antibody Formation MeSH
- Vaccination MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Publication type
- Journal Article MeSH
- Clinical Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, Bacterial MeSH
- Antibodies MeSH
A single-center study was conducted on 120 patients with inherited disorders of primary hemostasis followed at our hematological center. These patients presented a variety of bleeding symptoms; however, they had no definitive diagnosis. Establishing a diagnosis has consequences for the investigation of probands in families and for treatment management; therefore, we aimed to improve the diagnosis rate in these patients by implementing advanced diagnostic methods. According to the accepted international guidelines at the time of study, we investigated platelet morphology, platelet function assay, light-transmission aggregometry, and flow cytometry. Using only these methods, we were unable to make a definitive diagnosis for most of our patients. However, next-generation sequencing (NGS), which was applied in 31 patients, allowed us to establish definitive diagnoses in six cases (variants in ANKRD26, ITGA2B, and F8) and helped us to identify suspected variants (NBEAL2, F2, BLOC1S6, AP3D1, GP1BB, ANO6, CD36, and ITGB3) and new suspected variants (GFI1B, FGA, GP1BA, and ITGA2B) in 11 patients. The role of NGS in patients with suspicious bleeding symptoms is growing and it changes the diagnostic algorithm. The greatest disadvantage of NGS, aside from the cost, is the occurrence of gene variants of uncertain significance.
- Keywords
- ANKRD26, ITGA2B, NGS, clinical laboratory techniques, inherited platelet disorders, primary hemostasis,
- MeSH
- Blood Proteins genetics MeSH
- Hemorrhage MeSH
- Humans MeSH
- Blood Platelet Disorders * diagnosis genetics MeSH
- Platelet Function Tests MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Blood Proteins MeSH
- NBEAL2 protein, human MeSH Browser
For the last two decades, measurable residual disease (MRD) has become one of the most powerful independent prognostic factors in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, the effect of therapy on the bone marrow (BM) microenvironment and its potential relationship with the MRD status and disease free survival (DFS) still remain to be investigated. Here we analyzed the distribution of mesenchymal stem cells (MSC) and endothelial cells (EC) in the BM of treated BCP-ALL patients, and its relationship with the BM MRD status and patient outcome. For this purpose, the BM MRD status and EC/MSC regeneration profile were analyzed by multiparameter flow cytometry (MFC) in 16 control BM (10 children; 6 adults) and 1204 BM samples from 347 children and 100 adult BCP-ALL patients studied at diagnosis (129 children; 100 adults) and follow-up (824 childhood samples; 151 adult samples). Patients were grouped into a discovery cohort (116 pediatric BCP-ALL patients; 338 samples) and two validation cohorts (74 pediatric BCP-ALL, 211 samples; and 74 adult BCP-ALL patients; 134 samples). Stromal cells (i.e., EC and MSC) were detected at relatively low frequencies in all control BM (16/16; 100%) and in most BCP-ALL follow-up samples (874/975; 90%), while they were undetected in BCP-ALL BM at diagnosis. In control BM samples, the overall percentage of EC plus MSC was higher in children than adults (p = 0.011), but with a similar EC/MSC ratio in both groups. According to the MRD status similar frequencies of both types of BM stromal cells were detected in BCP-ALL BM studied at different time points during the follow-up. Univariate analysis (including all relevant prognostic factors together with the percentage of stromal cells) performed in the discovery cohort was used to select covariates for a multivariate Cox regression model for predicting patient DFS. Of note, an increased percentage of EC (>32%) within the BCP-ALL BM stromal cell compartment at day +78 of therapy emerged as an independent unfavorable prognostic factor for DFS in childhood BCP-ALL in the discovery cohort—hazard ratio (95% confidence interval) of 2.50 (1−9.66); p = 0.05—together with the BM MRD status (p = 0.031). Further investigation of the predictive value of the combination of these two variables (%EC within stromal cells and MRD status at day +78) allowed classification of BCP-ALL into three risk groups with median DFS of: 3.9, 3.1 and 1.1 years, respectively (p = 0.001). These results were confirmed in two validation cohorts of childhood BCP-ALL (n = 74) (p = 0.001) and adult BCP-ALL (n = 40) (p = 0.004) treated at different centers. In summary, our findings suggest that an imbalanced EC/MSC ratio in BM at day +78 of therapy is associated with a shorter DFS of BCP-ALL patients, independently of their MRD status. Further prospective studies are needed to better understand the pathogenic mechanisms involved.
Acute megakaryoblastic leukemia (AMKL) is a rare and heterogeneous subtype of acute myeloid leukemia (AML). We evaluated the immunophenotypic profile of 72 AMKL and 114 non-AMKL AML patients using the EuroFlow AML panel. Univariate and multivariate/multidimensional analyses were performed to identify most relevant markers contributing to the diagnosis of AMKL. AMKL patients were subdivided into transient abnormal myelopoiesis (TAM), myeloid leukemia associated with Down syndrome (ML-DS), AML-not otherwise specified with megakaryocytic differentiation (NOS-AMKL), and AMKL-other patients (AML patients with other WHO classification but with flowcytometric features of megakaryocytic differentiation). Flowcytometric analysis showed good discrimination between AMKL and non-AMKL patients based on differential expression of, in particular, CD42a.CD61, CD41, CD42b, HLADR, CD15 and CD13. Combining CD42a.CD61 (positive) and CD13 (negative) resulted in a sensitivity of 71% and a specificity of 99%. Within AMKL patients, TAM and ML-DS patients showed higher frequencies of immature CD34+/CD117+ leukemic cells as compared to NOS-AMKL and AMKL-Other patients. In addition, ML-DS patients showed a significantly higher expression of CD33, CD11b, CD38 and CD7 as compared to the other three subgroups, allowing for good distinction of these patients. Overall, our data show that the EuroFlow AML panel allows for straightforward diagnosis of AMKL and that ML-DS is associated with a unique immunophenotypic profile.
- Keywords
- AMKL, Down syndrome, EuroFlow, immunophenotyping, transient abnormal myelopoiesis,
- Publication type
- Journal Article MeSH
BACKGROUND: The Human Cell Differentiation Molecules (HCDM) organizes Human Leukocyte Differentiation Antigen (HLDA) workshops to test and name clusters of antibodies that react with a specific antigen. These cluster of differentiation (CD) markers have provided the scientific community with validated antibody clones, consistent naming of targets and reproducible identification of leukocyte subsets. Still, quantitative CD marker expression profiles and benchmarking of reagents at the single-cell level are currently lacking. OBJECTIVE: To develop a flow cytometric procedure for quantitative expression profiling of surface antigens on blood leukocyte subsets that is standardized across multiple research laboratories. METHODS: A high content framework to evaluate the titration and reactivity of Phycoerythrin (PE)-conjugated monoclonal antibodies (mAbs) was created. Two flow cytometry panels were designed: an innate cell tube for granulocytes, dendritic cells, monocytes, NK cells and innate lymphoid cells (12-color) and an adaptive lymphocyte tube for naive and memory B and T cells, including TCRγδ+, regulatory-T and follicular helper T cells (11-color). The potential of these 2 panels was demonstrated via expression profiling of selected CD markers detected by PE-conjugated antibodies and evaluated using 561 nm excitation. RESULTS: Using automated data annotation and dried backbone reagents, we reached a robust workflow amenable to processing hundreds of measurements in each experiment in a 96-well plate format. The immunophenotyping panels enabled discrimination of 27 leukocyte subsets and quantitative detection of the expression of PE-conjugated CD markers of interest that could quantify protein expression above 400 units of antibody binding capacity. Expression profiling of 4 selected CD markers (CD11b, CD31, CD38, CD40) showed high reproducibility across centers, as well as the capacity to benchmark unique clones directed toward the same CD3 antigen. CONCLUSION: We optimized a procedure for quantitative expression profiling of surface antigens on blood leukocyte subsets. The workflow, bioinformatics pipeline and optimized flow panels enable the following: 1) mapping the expression patterns of HLDA-approved mAb clones to CD markers; 2) benchmarking new antibody clones to established CD markers; 3) defining new clusters of differentiation in future HLDA workshops.
- Keywords
- CD marker, cluster of differentiation (CD), expression profiling, flow cytometry, surfaceome,
- MeSH
- Antigens, Surface * metabolism MeSH
- Killer Cells, Natural metabolism MeSH
- Antigens, CD metabolism MeSH
- Leukocytes MeSH
- Humans MeSH
- Antibodies, Monoclonal MeSH
- Immunity, Innate * MeSH
- Workflow MeSH
- Flow Cytometry methods MeSH
- Reference Standards MeSH
- Reproducibility of Results MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, Surface * MeSH
- Antigens, CD MeSH
- Antibodies, Monoclonal MeSH
Reproducible expert-independent flow-cytometric criteria for the differential diagnoses between mature B-cell neoplasms are lacking. We developed an algorithm-driven classification for these lymphomas by flow cytometry and compared it to the WHO gold standard diagnosis. Overall, 662 samples from 662 patients representing 9 disease categories were analyzed at 9 laboratories using the previously published EuroFlow 5-tube-8-color B-cell chronic lymphoproliferative disease antibody panel. Expression levels of all 26 markers from the panel were plotted by B-cell entity to construct a univariate, fully standardized diagnostic reference library. For multivariate data analysis, we subsequently used canonical correlation analysis of 176 training cases to project the multidimensional space of all 26 immunophenotypic parameters into 36 2-dimensional plots for each possible pairwise differential diagnosis. Diagnostic boundaries were fitted according to the distribution of the immunophenotypes of a given differential diagnosis. A diagnostic algorithm based on these projections was developed and subsequently validated using 486 independent cases. Negative predictive values exceeding 92.1% were observed for all disease categories except for follicular lymphoma. Particularly high positive predictive values were returned in chronic lymphocytic leukemia (99.1%), hairy cell leukemia (97.2%), follicular lymphoma (97.2%), and mantle cell lymphoma (95.4%). Burkitt and CD10+ diffuse large B-cell lymphomas were difficult to distinguish by the algorithm. A similar ambiguity was observed between marginal zone, lymphoplasmacytic, and CD10- diffuse large B-cell lymphomas. The specificity of the approach exceeded 98% for all entities. The univariate immunophenotypic library and the multivariate expert-independent diagnostic algorithm might contribute to increased reproducibility of future diagnostics in mature B-cell neoplasms.
- MeSH
- Lymphoma, Large B-Cell, Diffuse * MeSH
- Adult MeSH
- Lymphoma, Follicular * diagnosis MeSH
- Immunophenotyping MeSH
- Humans MeSH
- Flow Cytometry methods MeSH
- Reproducibility of Results MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
Large-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high throughput approaches for single-cell analysis; however, manual interpretation of multidimensional data poses a challenge when attempting to capture full cellular diversity and provide reproducible results. We present FlowCT, a semi-automated workspace empowered to analyze large data sets. It includes pre-processing, normalization, multiple dimensionality reduction techniques, automated clustering, and predictive modeling tools. As a proof of concept, we used FlowCT to compare the T-cell compartment in bone marrow (BM) with peripheral blood (PB) from patients with smoldering multiple myeloma (SMM), identify minimally invasive immune biomarkers of progression from smoldering to active MM, define prognostic T-cell subsets in the BM of patients with active MM after treatment intensification, and assess the longitudinal effect of maintenance therapy in BM T cells. A total of 354 samples were analyzed and immune signatures predictive of malignant transformation were identified in 150 patients with SMM (hazard ratio [HR], 1.7; P < .001). We also determined progression-free survival (HR, 4.09; P < .0001) and overall survival (HR, 3.12; P = .047) in 100 patients with active MM. New data also emerged about stem cell memory T cells, the concordance between immune profiles in BM and PB, and the immunomodulatory effect of maintenance therapy. FlowCT is a new open-source computational approach that can be readily implemented by research laboratories to perform quality control, analyze high-dimensional data, unveil cellular diversity, and objectively identify biomarkers in large immune monitoring studies. These trials were registered at www.clinicaltrials.gov as #NCT01916252 and #NCT02406144.
- MeSH
- Biomarkers MeSH
- Smoldering Multiple Myeloma * MeSH
- Immunophenotyping MeSH
- Bone Marrow MeSH
- Humans MeSH
- Flow Cytometry methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH