Nejvíce citovaný článek - PubMed ID 22989857
Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application
Cadmium (Cd) or nickel (Ni) were applied as a foliar spray (1 µM solution over one month) to mimic air pollution and to monitor metabolic responses and oxidative stress in the pteridophyte species. Exogenous metals did not affect the metal content of the soil and had relatively little effect on the essential elements in leaves or rhizomes. The amounts of Cd and Ni were similar in treated leaves (7.2 µg Cd or 5.3 µg Ni/g DW in mature leaves compared with 0.4 µg Cd or 1.2 µg Ni/g DW in the respective control leaves), but Ni was more abundant in rhizomes (56.6 µg Ni or 3.4 µg Cd/g DW), resulting in a higher Cd translocation and bioaccumulation factor. The theoretical calculation revealed that ca. 4% of Cd and 5.5% of Ni from the applied solution per plant/pot was absorbed. Excess Cd induced stronger ROS production followed by changes in SOD and CAT activities, whereas nitric oxide (NO) stimulation was less intense, as detected by confocal microscopy. The hadrocentric vascular bundles in the petioles also showed higher ROS and NO signals under metal excess. This may be a sign of increased ROS formation, and high correlations were observed. Proteins and amino acids were stimulated by Cd or Ni application in individual organs, whereas phenols and flavonols were almost unaffected. The data suggest that even low levels of exogenous metals induce an oxidative imbalance, although no visible damage is observed, and that the responses of ferns to metals are similar to those of seed plants or algae.
- Klíčová slova
- antioxidant molecules, heavy metals, reactive oxygen species, soil pollution,
- MeSH
- Adiantum * metabolismus MeSH
- kadmium metabolismus MeSH
- kapradiny * metabolismus MeSH
- látky znečišťující půdu * toxicita chemie MeSH
- rostliny metabolismus MeSH
- těžké kovy * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kadmium MeSH
- látky znečišťující půdu * MeSH
- Nickel-56 MeSH Prohlížeč
- těžké kovy * MeSH
Composition of three types of honey (mixed forest honey and monofloral-black locust and rapeseed honeys) originated from the vicinity of an industrial town (Košice, Slovak Republic) was compared. Higher content of minerals including toxic metals in forest honey (1358.6 ng Ni/g, 85.6 ng Pb/g, and 52.4 ng Cd/g) than in rapeseed and black locust honeys confirmed that botanical origin rather than the distance for eventual source of pollution (steel factory) affects metal deposition. Benzoic acid derivatives were typically more accumulated in forest but cinnamic acid derivatives and some flavonoids in rapeseed honey (in free and/or glycoside-bound fraction). In terms of quantity, p-hydroxybenzoic and p-coumaric acids were mainly abundant. Total phenols, thiols, and proteins were abundant in forest honey. Some metals and phenols contributed to separation of honeys based on principal component analysis (PCA). Native amount of 5-(hydroxymethyl)furfural was not related to honey type (~11 μg/g) and was elevated after strong acid hydrolysis (200-350 μg/g) but it did not interfere with the assay of phenols by Folin-Ciocalteu reagent. This is the first report of metals and metabolites in the same study, and data are discussed with available literature. We conclude that black locust (acacia) honey is the most suitable for daily use and that central European monofloral honeys contain lower amounts of toxic metals in comparison with other geographical regions.
- Klíčová slova
- Antioxidants, Food safety, Heavy metals, Mass spectrometry,
- MeSH
- 2-furaldehyd analogy a deriváty chemie MeSH
- akácie MeSH
- fenoly analýza MeSH
- flavonoidy analýza MeSH
- kovy analýza MeSH
- med analýza MeSH
- minerály analýza MeSH
- průmysl MeSH
- Robinia MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Slovenská republika MeSH
- Názvy látek
- 2-furaldehyd MeSH
- 5-hydroxymethylfurfural MeSH Prohlížeč
- fenoly MeSH
- flavonoidy MeSH
- kovy MeSH
- minerály MeSH
Various nitric oxide modulators (NO donors--SNP, GSNO, DEA NONOate and scavengers--PTIO, cPTIO) were tested to highlight the role of NO under Cd excess in various ontogenetic stages of chamomile (Matricaria chamomilla). Surprisingly, compared to Cd alone, SNP and PTIO elevated Cd uptake (confirmed also by PhenGreen staining) but depleted glutathione (partially ascorbic acid) and phytochelatins PC2 and PC3 in both older plants (cultured hydroponically) and seedlings (cultured in deionised water). Despite these anomalous impacts, fluorescence staining of NO and ROS confirmed predictable assumptions and revealed reciprocal changes (decrease in NO but increase in ROS after PTIO addition and the opposite after SNP application). Subsequent tests using alternative modulators and seedlings confirmed changes to NO and ROS after application of GSNO and DEA NONOate as mentioned above for SNP while cPTIO altered only NO level (depletion). On the contrary to SNP and PTIO, GSNO, DEA NONOate and cPTIO did not elevate Cd content and phytochelatins (PC2, PC3) were rather elevated. These data provide evidence that various NO modulators are useful in terms of NO and ROS manipulation but interactions with intact plants affect metal uptake and must therefore be used with caution. In this view, cPTIO and DEA NONOate revealed the less pronounced side impacts and are recommended as suitable NO scavenger/donor in plant physiological studies under Cd excess.
- MeSH
- antioxidancia chemie MeSH
- cyklické N-oxidy chemie MeSH
- donory oxidu dusnatého chemie MeSH
- fluorescenční mikroskopie MeSH
- glutathion chemie MeSH
- heřmánek, heřmánkovec, rmen, rmenec účinky léků MeSH
- imidazoly chemie MeSH
- kadmium chemie MeSH
- konfokální mikroskopie MeSH
- kyselina askorbová chemie MeSH
- nitroprusid chemie MeSH
- oxid dusnatý chemie MeSH
- reaktivní formy kyslíku chemie MeSH
- S-nitrosoglutathion chemie MeSH
- semena rostlinná účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide MeSH Prohlížeč
- antioxidancia MeSH
- cyklické N-oxidy MeSH
- donory oxidu dusnatého MeSH
- glutathion MeSH
- imidazoly MeSH
- kadmium MeSH
- kyselina askorbová MeSH
- nitroprusid MeSH
- oxid dusnatý MeSH
- reaktivní formy kyslíku MeSH
- S-nitrosoglutathion MeSH