Exercise training (ET) is well established to induce vascular adaptations on the metabolically active muscles. These adaptations include increased function of vascular potassium channels and enhanced endothelium-dependent relaxations. However, the available data on the effect of ET on vasculatures that normally constrict during exercise, such as mesenteric arteries (MA), are scarce and not conclusive. Therefore, this study hypothesized that 10 weeks of moderate-intensity ET would result in adaptations towards more vasoconstriction or/and less vasodilatation of MA. Young Fischer 344 rats were randomly assigned to a sedentary group (SED; n=24) or exercise training group (EXE; n=28). The EXE rats underwent a progressive treadmill ET program for 10 weeks. Isometric tensions of small (SED; 252.9+/-29.5 microm, EXE; 248.6+/-34.4 microm) and large (SED; 397.7+/-85.3 microm, EXE; 414.0+/-86.95 microm) MA were recorded in response to cumulative phenylephrine concentrations (PE; 0-30 microM) in the presence and absence of the BKCa channel blocker, Iberiotoxin (100 nM). In another set of experiments, tensions in response to cumulative concentration-response curves of acetylcholine (ACh) or sodium nitroprusside (SNP) were obtained, and pEC50s were compared. Immunoblotting was performed to measure protein expression levels of the BKCa channel subunits and eNOS. ET did not alter the basal tension of small and large MA but significantly increased their responses to PE, and reduced the effect of BKCa channels in opposing the contractile responses to PE without changes in the protein expression level of BKCa subunits. ET also elicited a size-dependent functional adaptations that involved reduced endothelium-independent and endothelium-dependent relaxations. In large MA the sensitivity to SNP was decreased more than in small MA suggesting impaired nitric oxide (NO)-dependent mechanisms within the vascular smooth muscle cells of ET group. Whereas the shift in pEC50 of ACh-induced relaxation of small MA would suggest more effect on the production of NO within the endothelium, which is not changed in large MA of ET group. However, the eNOS protein expression level was not significantly changed between the ET and SED groups. In conclusion, our results indicate an increase in contraction and reduced relaxation of MA after 10 weeks of ET, an adaptation that may help shunt blood flow to metabolically active tissues during acute exercise.
- MeSH
- arteriae mesentericae * MeSH
- cévní endotel metabolismus MeSH
- kondiční příprava zvířat MeSH
- krysa rodu Rattus MeSH
- nitroprusid farmakologie MeSH
- oxid dusnatý * metabolismus MeSH
- vápníkem aktivované draslíkové kanály s vysokou vodivostí - alfa-podjednotky metabolismus MeSH
- vazodilatace * MeSH
- vazokonstrikce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Kcnma1 protein, rat MeSH Prohlížeč
- nitroprusid MeSH
- oxid dusnatý * MeSH
- vápníkem aktivované draslíkové kanály s vysokou vodivostí - alfa-podjednotky MeSH
Sodium nitroprusside (SNP), which produces nitric oxide (NO) has the well-documented potential to alleviate the adverse effects of various abiotic stressors such as salinity. The present study aimed at investigating how the application of SNP can ameliorate the adverse effects of salt stress and boost tolerance in Raphanus sativus. Salt stress induced by application of 100 or 200 mM NaCl significantly decreased photosynthetic pigments and chlorophyll fluorescence, followed by a significant reduction in carbohydrate content. SNP treatment increased salt-tolerance in plants by inhibiting the adverse effect of salinity on the photosynthetic apparatus and the accumulation of sugars. Salt stress was accompanied by a reduction in total antioxidant power (FRAP), accumulation of damaging levels of H2O2, lipid peroxidation, and reduction in protein, while SNP enhanced FRAP, reduced H2O2 and lipid peroxidation, and restored protein abundance. SNP treatment also increased hypocotyl growth of salt-stressed plants, accompanied by improvement in anatomical structure. Cross sections of the hypocotyl showed increased diameter of the central cylinder and thickness of the casparian strip in the SNP-treated plants under stress conditions. Indeed, the observed improvement in the growth of hypocotyl and leaves of salt-stressed radish plants treated with SNP, in parallel with improved physiology and anatomical features, suggested that NO can regulate diverse mechanisms to effectively increase salt tolerance.
- Klíčová slova
- Anatomical structure, Hypocotyl, Nitric oxide, Plant growth, Radish,
- MeSH
- antioxidancia MeSH
- fyziologický stres MeSH
- listy rostlin MeSH
- nitroprusid farmakologie MeSH
- peroxid vodíku MeSH
- Raphanus * MeSH
- solný stres MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- nitroprusid MeSH
- peroxid vodíku MeSH
Soil salinity disrupts the physiological and biochemical processes of crop plants and ultimately leads to compromising future food security. Sodium nitroprusside (SNP), a contributor to nitric oxide (NO), holds the potential to alleviate abiotic stress effects and boost tolerance in plants, whereas less information is available on its role in salt-stressed lentils. We examined the effect of exogenously applied SNP on salt-stressed lentil plants by monitoring plant growth and yield-related attributes, biochemistry of enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) amassing of leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2). Salinity stress was induced by NaCl application at concentrations of 50 mM (moderate salinity) and 100 mM (severe salinity), while it was alleviated by SNP application at concentrations of 50 µM and 100 µM. Salinity stress severely inhibited the length of roots and shoots, the relative water content, and the chlorophyll content of the leaves, the number of branches, pods, seeds, seed yield, and biomass per plant. In addition, MDA, H2O2 as well as SOD, CAT, and POD activities were increased with increasing salinity levels. Plants supplemented with SNP (100 µM) showed a significant improvement in the growth- and yield-contributing parameters, especially in plants grown under moderate salinity (50 mM NaCl). Essentially, the application of 100 µM SNP remained effective to rescue lentil plants under moderate salinity by regulating plant growth and biochemical pathways. Thus, the exogenous application of SNP could be developed as a useful strategy for improving the performance of lentil plants in salinity-prone environments.
- Klíčová slova
- abiotic stress tolerance, antioxidant enzymes, legumes, mitigation, reactive oxygen species,
- MeSH
- antioxidancia metabolismus MeSH
- čočka chemie účinky léků fyziologie MeSH
- fyziologický stres účinky léků MeSH
- listy rostlin chemie účinky léků metabolismus MeSH
- nitroprusid farmakologie MeSH
- peroxid vodíku metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- solný stres účinky léků MeSH
- vývoj rostlin účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- nitroprusid MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku MeSH
Seed germination is critical for successful crop production and this growth stage can be very sensitive to salt stress depending on the plant's tolerance mechanisms. The pretreatment of Chenopodium quinoa (quinoa) seeds with CaCl2, H2O2 and sodium nitroprusside (SNP) limited the adverse effect of salt stress on seed germination. The pre-treated seeds showed a significant increase in germination rate, relative germination rate and germination index while the mean germination time was significantly reduced under both optimal and stress conditions. In parallel with seed germination, the negative effect of salt stress on the activity of α-amylase and β-amylase was reduced in pre-treated seeds. The amylase enzymes are responsible for starch hydrolysis, so the reduction of amylase activity by salt stress resulted in higher starch content in the seeds and lower concentrations of water-soluble sugars such as glucose. Pretreatment stimulated amylase activity resulting in starch breakdown and increased content of water-soluble sugars in the salt-stressed seeds. Protein and amino acid contents were significantly enhanced in salt-stressed seeds, which were highlighted in pre-treated seeds. The findings of this study demonstrate that pretreatment of quinoa seeds with CaCl2, H2O2 and SNP at 5, 5 and 0.2 mM, respectively, concentration to achieve rapid germination at high levels under optimal and salt-stress conditions.
- Klíčová slova
- Amino acids, Amylase, Carbohydrates, Proteins, Salt tolerance, Seed germination,
- MeSH
- Chenopodium quinoa účinky léků fyziologie MeSH
- chlorid vápenatý farmakologie MeSH
- klíčení * MeSH
- nitroprusid farmakologie MeSH
- oxid dusnatý metabolismus MeSH
- peroxid vodíku metabolismus farmakologie MeSH
- semena rostlinná účinky léků fyziologie MeSH
- soli MeSH
- solný stres * MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid vápenatý MeSH
- nitroprusid MeSH
- oxid dusnatý MeSH
- peroxid vodíku MeSH
- soli MeSH
- vápník MeSH
Being a chilling-sensitive staple crop, rice (Oryza sativa L.) is vulnerable to climate change. The competence of rice to withstand chilling stress should, therefore, be enhanced through technological tools. The present study employed chemical intervention like application of sodium nitroprusside (SNP) as nitric oxide (NO) donor and elucidated the underlying morpho-physiological and biochemical mechanisms of NO-mediated chilling tolerance in rice plants. At germination stage, germination indicators were interrupted by chilling stress (5.0 ± 1.0 °C for 8 h day-1), while pretreatment with 100 μM SNP markedly improved all the indicators. At seedling stage (14-day-old), chilling stress caused stunted growth with visible toxicity along with alteration of biochemical markers, for example, increase in oxidative stress markers (superoxide, hydrogen peroxide, and malondialdehyde) and osmolytes (total soluble sugar; proline and soluble protein content, SPC), and decrease in chlorophyll (Chl), relative water content (RWC), and antioxidants. However, NO application attenuated toxicity symptoms with improving growth attributes which might be related to enhance activities of antioxidants, mineral contents, Chl, RWC and SPC. Furthermore, principal component analysis indicated that water imbalance and increased oxidative damage were the main contributors to chilling injury, whereas NO-mediated mineral homeostasis and antioxidant defense were the critical determinants for chilling tolerance in rice. Collectively, our findings revealed that NO protects against chilling stress through valorizing cellular defense mechanisms, suggesting that exogenous application of NO could be a potential tool to evolve cold tolerance as well as climate resilience in rice.
- Klíčová slova
- Antioxidant system, Mineral homeostasis, Nitric oxide, Oxidative stress, Redox reaction, Rice, Temperature stress,
- MeSH
- donory oxidu dusnatého farmakologie MeSH
- homeostáza účinky léků MeSH
- klíčení účinky léků MeSH
- malondialdehyd metabolismus MeSH
- nitroprusid farmakologie MeSH
- nízká teplota MeSH
- ochrana úrody metody MeSH
- oxid dusnatý metabolismus MeSH
- peroxid vodíku metabolismus MeSH
- peroxidace lipidů účinky léků MeSH
- peroxidasy metabolismus MeSH
- reakce na chladový šok fyziologie MeSH
- rýže (rod) účinky léků MeSH
- semenáček účinky léků MeSH
- superoxidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- donory oxidu dusnatého MeSH
- malondialdehyd MeSH
- nitroprusid MeSH
- oxid dusnatý MeSH
- peroxid vodíku MeSH
- peroxidasy MeSH
- superoxidy MeSH
Nitric oxide (NO) is a major gasotransmitter involved in several physiological processes of male reproduction. There is, nevertheless, little information concerning the role of NO during semen storage. The aim of this study was to evaluate the effect of NO on boar semen stored at 17oC for 72 h. For this purporse, sperm samples were treated with 0.625, 1.25, 2.5, 5, and 10 mM aminoguanidine (AG) or Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME), a selective and non-selective NO synthase (NOS) inhibitor, respectively. Moreover, sodium nitroprusside (SNP), a NO donor, was used at the dose of 18.75, 37.5, 75, and 150 μM. Sperm motility, membrane integrity, and acrosomal status were evaluated at 0, 4, 24, 48, and 72 h of semen storage. A significant increase of the amplitude of lateral sperm head displacement (ALH), and both curvilinear and straight-line velocity (VCL and VSL, respectively) was observed at 72 h of semen storage in samples treated with 0.625 mM AG, probably because of the antioxidant properties of this NOS inhibitor. Contrarily, 0.625 mM L-NAME showed no effect on boar sperm parameters during the entire period of semen storage. Moreover, AG and L-NAME at 10 mM negatively affected sperm kinetics and acrosome integrity, which may provide further support to the notion that low NO levels are necessary for a normal sperm function. The concentrations of SNP used in this study had mostly no or negative effects on boar sperm parameters during semen storage. In conclusion, the results from this study increase the understanding of the role of NO on boar sperm physiology.
- Klíčová slova
- NO donor, NOS inhibitor, boar spermatozoa, nitric oxide, nitric oxide synthases,
- MeSH
- akrozom účinky léků MeSH
- buněčná membrána účinky léků MeSH
- časové faktory MeSH
- guanidiny farmakologie MeSH
- motilita spermií účinky léků MeSH
- nitroprusid farmakologie MeSH
- oxid dusnatý aplikace a dávkování farmakologie MeSH
- prasata * MeSH
- spermie účinky léků MeSH
- synthasa oxidu dusnatého, typ II antagonisté a inhibitory metabolismus MeSH
- uchování spermatu veterinární MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- guanidiny MeSH
- nitroprusid MeSH
- oxid dusnatý MeSH
- pimagedine MeSH Prohlížeč
- synthasa oxidu dusnatého, typ II MeSH
Causes of early hypoperfusion after subarachnoid hemorrhage (SAH) include intracranial hypertension as well as vasoconstriction. The aim of the study was to assess the effect of intracerebroventricular (ICV) administration of sodium nitroprusside (SNP) on early hypoperfusion after SAH. Male Wistar rats (220-240 g) were used, SAH group received 250 microl of fresh autologous arterial blood into the prechiasmatic cistern; sham-operated animals received 250 microl of isotonic solution. Therapeutic intervention: ICV administration of 10 microg SNP; 5 microl 5 % glucose (SNP vehicle) and untreated control. Brain perfusion and invasive blood pressure were monitored for 30 min during and after induction of SAH. Despite SNP caused increase of perfusion in sham-operated animals, no response was observed in half of SAH animals. The other half developed hypotension accompanied by brain hypoperfusion. There was no difference between brain perfusion in SNP-treated, glucose-treated and untreated SAH animals during the monitored period. We did not observe expected beneficial effect of ICV administration of SNP after SAH. Moreover, half of the SNP-treated animals developed serious hypotension which led to brain hypoperfusion. This is the important finding showing that this is not the option for early management in patient after SAH.
- MeSH
- antihypertenziva aplikace a dávkování škodlivé účinky MeSH
- intrakraniální hypotenze chemicky indukované patofyziologie MeSH
- intraventrikulární infuze MeSH
- krysa rodu Rattus MeSH
- mozek krevní zásobení účinky léků patofyziologie MeSH
- mozkový krevní oběh účinky léků fyziologie MeSH
- nitroprusid aplikace a dávkování škodlivé účinky MeSH
- potkani Wistar MeSH
- subarachnoidální krvácení farmakoterapie patofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antihypertenziva MeSH
- nitroprusid MeSH
The endothelial barrier function is tightly controlled by a broad range of signaling cascades including nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway. It has been proposed that disturbances in NO and cGMP production could interfere with proper endothelial barrier function. In this study, we assessed the effect of interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, on NO and cGMP levels and examined the mechanisms by which NO and cGMP regulate the IFN-gamma-mediated HUVECs hyperpermeability. The flux of fluorescein isothiocyanate-labeled dextran across cell monolayers was used to study the permeability of endothelial cells. Here, we found that IFN-gamma significantly attenuated basal NO concentration and the increased NO levels supplied by a NO donor, sodium nitroprusside (SNP). Besides, application of IFN-gamma also significantly attenuated both the basal cGMP concentration and the increased cGMP production donated by a cell permeable cGMP analogue, 8-bromo-cyclic GMP (8-Br-cGMP). In addition, exposure of the cell monolayer to IFN-gamma significantly increased HUVECs basal permeability. However, L-NAME pretreatment did not suppress IFN-gamma-induced HUVECs hyperpermeability. L-NAME pretreatment followed by SNP or SNP pretreatment partially reduced IFN-gamma-induced HUVECs hyperpermeability. Pretreatment with a guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), led to a further increase in IFN-gamma-induced HUVECs hyperpermeability. The findings suggest that the mechanism underlying IFN-gamma-induced increased HUVECs permeability is partly related to the inhibition of NO production.
- MeSH
- donory oxidu dusnatého farmakologie MeSH
- endoteliální buňky pupečníkové žíly (lidské) účinky léků metabolismus MeSH
- guanosinmonofosfát cyklický analogy a deriváty metabolismus farmakologie MeSH
- guanylátcyklasa antagonisté a inhibitory MeSH
- inhibitory enzymů farmakologie MeSH
- interferon gama farmakologie MeSH
- kapilární permeabilita účinky léků MeSH
- lidé MeSH
- NG-nitroargininmethylester farmakologie MeSH
- nitroprusid farmakologie MeSH
- oxid dusnatý metabolismus MeSH
- permeabilita buněčné membrány MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 8-bromocyclic GMP MeSH Prohlížeč
- donory oxidu dusnatého MeSH
- guanosinmonofosfát cyklický MeSH
- guanylátcyklasa MeSH
- inhibitory enzymů MeSH
- interferon gama MeSH
- NG-nitroargininmethylester MeSH
- nitroprusid MeSH
- oxid dusnatý MeSH
STR/N is an inbred strain of mice which is known to exhibit extreme polydipsia and polyuria. We previously found central administration of angiotensin II enhanced cardiovascular responses in STR/N mice than normal mice, suggesting that STR/N mice might exhibit different cardiovascular responses. Therefore, in this study, we investigated daily mean arterial blood pressure and heart rate, and changes in the baroreceptor-heart rate reflex in conscious STR/N mice and control (ICR) mice. We found that variability in daily mean arterial blood pressure and heart rate was significantly larger in STR/N mice than in ICR mice (p<0.05). There was a stronger response to phenylephrine (PE) in STR/N mice than in ICR mice. For baroreceptor reflex sensitivity, in the rapid response period, the slopes of PE and sodium nitroprusside (SNP) were more negative in STR/N mice than in ICR mice. In the later period, the slopes of PE and SNP were negatively correlated between heart rate and blood pressure in ICR mice, but their slopes were positively correlated in STR/N mice. These results indicated that STR/N mice exhibited the different cardiovascular responses than ICR mice, suggesting that the dysfunction of baroreceptor reflex happened in conscious STR/N mice.
- MeSH
- baroreflex účinky léků MeSH
- fenylefrin farmakologie MeSH
- krevní tlak MeSH
- myši inbrední ICR MeSH
- myši MeSH
- nitroprusid farmakologie MeSH
- polydipsie genetika patofyziologie MeSH
- presoreceptory patofyziologie MeSH
- srdeční frekvence * účinky léků MeSH
- vazodilatancia farmakologie MeSH
- vazokonstriktory farmakologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fenylefrin MeSH
- nitroprusid MeSH
- vazodilatancia MeSH
- vazokonstriktory MeSH
Various nitric oxide modulators (NO donors--SNP, GSNO, DEA NONOate and scavengers--PTIO, cPTIO) were tested to highlight the role of NO under Cd excess in various ontogenetic stages of chamomile (Matricaria chamomilla). Surprisingly, compared to Cd alone, SNP and PTIO elevated Cd uptake (confirmed also by PhenGreen staining) but depleted glutathione (partially ascorbic acid) and phytochelatins PC2 and PC3 in both older plants (cultured hydroponically) and seedlings (cultured in deionised water). Despite these anomalous impacts, fluorescence staining of NO and ROS confirmed predictable assumptions and revealed reciprocal changes (decrease in NO but increase in ROS after PTIO addition and the opposite after SNP application). Subsequent tests using alternative modulators and seedlings confirmed changes to NO and ROS after application of GSNO and DEA NONOate as mentioned above for SNP while cPTIO altered only NO level (depletion). On the contrary to SNP and PTIO, GSNO, DEA NONOate and cPTIO did not elevate Cd content and phytochelatins (PC2, PC3) were rather elevated. These data provide evidence that various NO modulators are useful in terms of NO and ROS manipulation but interactions with intact plants affect metal uptake and must therefore be used with caution. In this view, cPTIO and DEA NONOate revealed the less pronounced side impacts and are recommended as suitable NO scavenger/donor in plant physiological studies under Cd excess.
- MeSH
- antioxidancia chemie MeSH
- cyklické N-oxidy chemie MeSH
- donory oxidu dusnatého chemie MeSH
- fluorescenční mikroskopie MeSH
- glutathion chemie MeSH
- heřmánek, heřmánkovec, rmen, rmenec účinky léků MeSH
- imidazoly chemie MeSH
- kadmium chemie MeSH
- konfokální mikroskopie MeSH
- kyselina askorbová chemie MeSH
- nitroprusid chemie MeSH
- oxid dusnatý chemie MeSH
- reaktivní formy kyslíku chemie MeSH
- S-nitrosoglutathion chemie MeSH
- semena rostlinná účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide MeSH Prohlížeč
- antioxidancia MeSH
- cyklické N-oxidy MeSH
- donory oxidu dusnatého MeSH
- glutathion MeSH
- imidazoly MeSH
- kadmium MeSH
- kyselina askorbová MeSH
- nitroprusid MeSH
- oxid dusnatý MeSH
- reaktivní formy kyslíku MeSH
- S-nitrosoglutathion MeSH