Most cited article - PubMed ID 23183590
Investigation of the metabolism of monepantel in ovine hepatocytes by UHPLC/MS/MS
The nematode Haemonchus contortus, a gastrointestinal parasite of ruminants, can severely burden livestock production. Although anthelmintics are the mainstay in the treatment of haemonchosis, their efficacy diminishes due to drug-resistance development in H. contortus. An increased anthelmintics inactivation via biotransformation belongs to a significant drug-resistance mechanism in H. contortus. UDP-glycosyltransferases (UGTs) participate in the metabolic inactivation of anthelmintics and other xenobiotic substrates through their conjugation with activated sugar, which drives the elimination of the xenobiotics due to enhanced solubility. The UGTs family, in terms of the biotransformation of commonly used anthelmintics, has been well described in adults as a target stage. In contrast, the free-living juvenile stages of H. contortus have attracted less attention. The expression of UGTs considerably varies throughout the life cycle of the juvenile nematodes, suggesting their different roles. Furthermore, the constitutive expression in a susceptible strain with two resistant strains shows several resistance-related changes in UGTs expression, and the exposure of juvenile stages of H. contortus to albendazole (ABZ) and ABZ-sulfoxide (ABZSO; in sublethal concentrations) leads to the increased expression of several UGTs. The anthelmintic drug ABZ and its primary metabolite ABZSO biotransformation, tested in the juvenile stages, shows significant differences between susceptible and resistant strain. Moreover, higher amounts of glycosidated metabolites of ABZ are formed in the resistant strain. Our results show similarly, as in adults, the UGTs and glycosidations significant for resistance-related differences in ABZ biotransformation and warrant further investigation in their individual functions.
- Keywords
- UGT, UHPLC-MS, anthelmintics, biotransformation, drug resistance, gene expression, nematode,
- Publication type
- Journal Article MeSH
The efficacy of anthelmintic therapy of farm animals rapidly decreases due to drug resistance development in helminths. In resistant isolates, the increased expression and activity of drug-metabolizing enzymes (DMEs), e.g. cytochromes P450 (CYPs), UDP-glycosyltransferases (UGTs) and P-glycoprotein transporters (P-gps), in comparison to sensitive isolates have been described. However, the mechanisms and circumstances of DMEs induction are not well known. Therefore, the present study was designed to find the changes in expression of CYPs, UGTs and P-gps in adult parasitic nematodes Haemonchus contortus exposed to sub-lethal doses of the benzimidazole anthelmintic drug albendazole (ABZ) and its active metabolite ABZ-sulfoxide (ABZSO). In addition, the effect of ABZ at sub-lethal doses on the ability to deactivate ABZ during consequent treatment was studied. The results showed that contact of H. contortus adults with sub-lethal doses of ABZ and ABZSO led to a significant induction of several DMEs, particularly cyp-2, cyp-3, cyp-6, cyp-7, cyp-8, UGT10B1, UGT24C1, UGT26A2, UGT365A1, UGT366C1, UGT368B2, UGT367A1, UGT371A1, UGT372A1 and pgp-3, pgp-9.1, pgp-9.2, pgp-10. This induction led to increased formation of ABZ metabolites (especially glycosides) and their increased export from the helminths' body into the medium. The present study demonstrates for the first time that contact of H. contortus with sub-lethal doses of ABZ (e.g. during underdose treatment) improves the ability of H. contortus adults to deactivate ABZ in consequent therapy.
- Keywords
- ABC-transporters, P-glycoprotein, UDP-glycosyl transferases, anthelmintics, benzimidazoles, cytochromes P450, drug resistance, nematode,
- MeSH
- Albendazole analogs & derivatives pharmacology MeSH
- Antinematodal Agents pharmacology MeSH
- Haemonchus drug effects enzymology MeSH
- Drug Resistance * MeSH
- Inactivation, Metabolic MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Albendazole MeSH
- albendazole sulfoxide MeSH Browser
- Antinematodal Agents MeSH
Water from wastewater treatment plants contains concentrations of pharmaceutically active compounds as high as micrograms per liter, which can adversely affect fish health and behavior, and contaminate the food chain. Here, we tested the ability of the common carp hepatic S9 fraction to produce the main metabolites from citalopram, metoprolol, sertraline, and venlafaxine. Metabolism in fish S9 fractions was compared to that in sheep. The metabolism of citalopram was further studied in fish. Our results suggest a large difference in the rate of metabolites formation between fish and sheep. Fish hepatic S9 fractions do not show an ability to form metabolites from venlafaxine, which was also the case for sheep. Citalopram, metoprolol, and sertraline were metabolized by both fish and sheep S9. Citalopram showed concentration-dependent N-desmethylcitalopram formation with Vmax = 1781 pmol/min/mg and Km = 29.7 μM. The presence of ellipticine, a specific CYP1A inhibitor, in the incubations reduced the formation of N-desmethylcitalopram by 30-100% depending on the applied concentration. These findings suggest that CYP1A is the major enzyme contributing to the formation of N-desmethylcitalopram. In summary, the results from the present in vitro study suggest that common carp can form the major metabolites of citalopram, metoprolol, and sertraline.
- Keywords
- citalopram, cytochrome P450, environmental toxicology, metabolite formation, metoprolol, sertraline, venlafaxine,
- MeSH
- Citalopram metabolism MeSH
- Cytochrome P-450 CYP1A1 metabolism MeSH
- Microsomes, Liver metabolism MeSH
- Carps MeSH
- Pharmaceutical Preparations metabolism MeSH
- Metoprolol metabolism MeSH
- Sheep MeSH
- Sertraline metabolism MeSH
- In Vitro Techniques MeSH
- Venlafaxine Hydrochloride metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Citalopram MeSH
- Cytochrome P-450 CYP1A1 MeSH
- Pharmaceutical Preparations MeSH
- Metoprolol MeSH
- Sertraline MeSH
- Venlafaxine Hydrochloride MeSH
Haemonchus contortus (family Trichostrongylidae, Nematoda), a hematophagous gastrointestinal parasite found in small ruminants, has a great ability to develop resistance to anthelmintic drugs. We studied the biotransformation of the three benzimidazole anthelmintics: albendazole (ABZ), ricobendazole (albendazole S-oxide; RCB) and flubendazole (FLU) in females and males of H. contortus in both a susceptible ISE strain and resistant IRE strain. The ex vivo cultivation of living nematodes in culture medium with or without the anthelmintics was used. Ultrasensitive UHPLC/MS/MS analysis revealed 9, 7 and 12 metabolites of ABZ, RCB and FLU, respectively, with most of these metabolites now described in the present study for the first time in H. contortus. The structure of certain metabolites shows the presence of biotransformation reactions not previously reported in nematodes. There were significant qualitative and semi-quantitative differences in the metabolites formed by male and female worms. In most cases, females metabolized drugs more extensively than males. Adults of the IRE strain were able to form many more metabolites of all the drugs than adults of the ISE strain. Some metabolites were even found only in adults of the IRE strain. These findings suggest that increased drug metabolism may play a role in resistance to benzimidazole drugs in H. contortus.
- Keywords
- Anthelmintics, Benzimidazole, Drug metabolism, Drug resistance, Nematode,
- MeSH
- Albendazole analogs & derivatives metabolism pharmacology MeSH
- Anthelmintics metabolism pharmacology MeSH
- Biochemical Phenomena MeSH
- Biotransformation MeSH
- Haemonchus metabolism MeSH
- Haemonchiasis drug therapy parasitology veterinary MeSH
- Drug Resistance * MeSH
- Mebendazole analogs & derivatives metabolism pharmacology MeSH
- Sheep Diseases drug therapy parasitology MeSH
- Sheep parasitology MeSH
- Sex Factors MeSH
- Tandem Mass Spectrometry MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Albendazole MeSH
- albendazole sulfoxide MeSH Browser
- Anthelmintics MeSH
- flubendazole MeSH Browser
- Mebendazole MeSH