Most cited article - PubMed ID 23422326
Dystonia and the cerebellum: a new field of interest in movement disorders?
INTRODUCTION: Deep brain stimulation (DBS) of the internal globus pallidus (GPi) is a well-established, effective treatment for dystonia. Substantial variability of therapeutic success has been the one of the drivers of an ongoing debate about proper stimulation site and settings, with several indications of the notional sweet spot pointing to the lower GPi or even subpallidal area. METHODS: The presented patient-blinded, random-order study with cross-sectional verification against healthy controls enrolled 17 GPi DBS idiopathic, cervical or generalised dystonia patients to compare the effect of the stimulation in the upper and lower GPi area, with the focus on sensorimotor network connectivity and local activity measured using functional magnetic resonance. RESULTS: Stimulation brought both these parameters to levels closer to the state detected in healthy controls. This effect was much more pronounced during the stimulation in the lower GPi area or beneath it than in slightly higher positions, with stimulation-related changes detected by both metrics of interest in the sensorimotor cortex, striatum, thalamus and cerebellum. CONCLUSIONS: All in all, this study not only replicated the results of previous studies on GPi DBS as a modality restoring sensorimotor network connectivity and local activity in dystonia towards the levels in healthy population, but also showed that lower GPi area or even subpallidal structures, be it white matter or even small, but essential nodes in the zona incerta as nucleus basalis of Meynert, are important regions to consider when programming DBS in dystonia patients.
- Keywords
- Deep brain stimulation, Dystonia, Internal globus pallidus, Resting-state functional magnetic resonance imaging,
- MeSH
- Adult MeSH
- Dystonic Disorders * therapy diagnostic imaging physiopathology MeSH
- Dystonia * therapy diagnostic imaging physiopathology MeSH
- Globus Pallidus * diagnostic imaging physiopathology MeSH
- Deep Brain Stimulation * methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Cross-Sectional Studies MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.
- Keywords
- Affective, Aging, Alzheimer’s Disease, Cerebellum, Cognitive, Motor,
- MeSH
- Depressive Disorder, Major * MeSH
- Adult MeSH
- Consensus MeSH
- Quality of Life MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Cerebellum pathology MeSH
- Cross-Sectional Studies MeSH
- Aged MeSH
- Aging MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
In cervical dystonia, functional MRI (fMRI) evidence indicates changes in several resting state networks, which revert in part following the botulinum neurotoxin A (BoNT) therapy. Recently, the involvement of the cerebellum in dystonia has gained attention. The aim of our study was to compare connectivity between cerebellar subdivisions and the rest of the brain before and after BoNT treatment. Seventeen patients with cervical dystonia indicated for treatment with BoNT were enrolled (14 female, aged 50.2 ± 8.5 years, range 38-63 years). Clinical and fMRI examinations were carried out before and 4 weeks after BoNT injection. Clinical severity was evaluated using TWSTRS. Functional MRI data were acquired on a 1.5 T scanner during 8 min rest. Seed-based functional connectivity analysis was performed using data extracted from atlas-defined cerebellar areas in both datasets. Clinical scores demonstrated satisfactory BoNT effect. After treatment, connectivity decreased between the vermis lobule VIIIa and the left dorsal mesial frontal cortex. Positive correlations between the connectivity differences and the clinical improvement were detected for the right lobule VI, right crus II, vermis VIIIb and the right lobule IX. Our data provide evidence for modulation of cerebello-cortical connectivity resulting from successful treatment by botulinum neurotoxin.
- MeSH
- Botulinum Toxins, Type A administration & dosage MeSH
- Adult MeSH
- Injections, Intralesional MeSH
- Cognition physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Cerebellum physiopathology MeSH
- Cerebral Cortex physiopathology MeSH
- Rest physiology MeSH
- Severity of Illness Index MeSH
- Torticollis diagnostic imaging drug therapy physiopathology psychology MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Botulinum Toxins, Type A MeSH
In dystonic and spastic movement disorders, however different in their pathophysiological mechanisms, a similar impairment of sensorimotor control with special emphasis on afferentation is assumed. Peripheral intervention on afferent inputs evokes plastic changes within the central sensorimotor system. Intramuscular application of botulinum toxin type A (BoNT-A) is a standard evidence-based treatment for both conditions. Apart from its peripheral action on muscle spindles, a growing body of evidence suggests that BoNT-A effects could also be mediated by changes at the central level including cerebral cortex. We review recent studies employing electrophysiology and neuroimaging to investigate how intramuscular application of BoNT-A influences cortical reorganization. Based on such data, BoNT-A becomes gradually accepted as a promising tool to correct the maladaptive plastic changes within the sensorimotor cortex. In summary, electrophysiology and especially neuroimaging studies with BoNT-A further our understanding of pathophysiology underlying dystonic and spastic movement disorders and may consequently help develop novel treatment strategies based on neural plasticity.
- Keywords
- botulinum toxin, dystonia, electrophysiology, functional magnetic resonance imaging, neural plasticity, spasticity,
- MeSH
- Botulinum Toxins, Type A adverse effects therapeutic use MeSH
- Dystonia diagnosis drug therapy physiopathology MeSH
- Muscle, Skeletal innervation MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Brain Mapping MeSH
- Cerebral Cortex diagnostic imaging drug effects physiopathology MeSH
- Neuromuscular Agents adverse effects therapeutic use MeSH
- Neuronal Plasticity drug effects MeSH
- Recovery of Function MeSH
- Motor Activity drug effects MeSH
- Treatment Outcome MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Botulinum Toxins, Type A MeSH
- Neuromuscular Agents MeSH
Clinical benefits of pallidal deep brain stimulation (GPi DBS) in dystonia increase relatively slowly suggesting slow plastic processes in the motor network. Twenty-two patients with dystonia of various distribution and etiology treated by chronic GPi DBS and 22 healthy subjects were examined for short-latency intracortical inhibition of the motor cortex elicited by paired transcranial magnetic stimulation. The relationships between grey matter volume and intracortical inhibition considering the long-term clinical outcome and states of the GPi DBS were analysed. The acute effects of GPi DBS were associated with a shortening of the motor response whereas the grey matter of chronically treated patients with a better clinical outcome showed hypertrophy of the supplementary motor area and cerebellar vermis. In addition, the volume of the cerebellar hemispheres of patients correlated with the improvement of intracortical inhibition which was generally less effective in patients than in controls regardless of the DBS states. Importantly, good responders to GPi DBS showed a similar level of short-latency intracortical inhibition in the motor cortex as healthy controls whereas non-responders were unable to increase it. All these results support the multilevel impact of effective DBS on the motor networks in dystonia and suggest potential biomarkers of responsiveness to this treatment.
- MeSH
- Adult MeSH
- Dystonia therapy MeSH
- Globus Pallidus physiology MeSH
- Deep Brain Stimulation methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Motor Cortex physiology MeSH
- Cerebellum physiology MeSH
- Neural Inhibition * MeSH
- Aged MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Botulinum toxin type A (BoNT) is considered an effective therapeutic option in cervical dystonia (CD). The pathophysiology of CD and other focal dystonias has not yet been fully explained. Results from neurophysiological and imaging studies suggest a significant involvement of the basal ganglia and thalamus, and functional abnormalities in premotor and primary sensorimotor cortical areas are considered a crucial factor in the development of focal dystonias. Twelve BoNT-naïve patients with CD were examined with functional MRI during a skilled hand motor task; the examination was repeated 4 weeks after the first BoNT injection to the dystonic neck muscles. Twelve age- and gender-matched healthy controls were examined using the same functional MRI paradigm without BoNT injection. In BoNT-naïve patients with CD, BoNT treatment was associated with a significant increase of activation in finger movement-induced fMRI activation of several brain areas, especially in the bilateral primary and secondary somatosensory cortex, bilateral superior and inferior parietal lobule, bilateral SMA and premotor cortex, predominantly contralateral primary motor cortex, bilateral anterior cingulate cortex, ipsilateral thalamus, insula, putamen, and in the central part of cerebellum, close to the vermis. The results of the study support observations that the BoNT effect may have a correlate in the central nervous system level, and this effect may not be limited to cortical and subcortical representations of the treated muscles. The results show that abnormalities in sensorimotor activation extend beyond circuits controlling the affected body parts in CD even the first BoNT injection is associated with changes in sensorimotor activation. The differences in activation between patients with CD after treatment and healthy controls at baseline were no longer present.
- Keywords
- Botulinum toxin, Brain plasticity, Cervical dystonia, Functional MRI,
- MeSH
- Afferent Pathways diagnostic imaging drug effects MeSH
- Botulinum Toxins, Type A therapeutic use MeSH
- Adult MeSH
- Oxygen blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Statistics, Nonparametric MeSH
- Neuromuscular Agents therapeutic use MeSH
- Image Processing, Computer-Assisted MeSH
- Psychomotor Performance drug effects MeSH
- Aged MeSH
- Sensorimotor Cortex diagnostic imaging drug effects MeSH
- Torticollis * diagnostic imaging drug therapy physiopathology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Botulinum Toxins, Type A MeSH
- Oxygen MeSH
- Neuromuscular Agents MeSH
The cerebellum has a striking homogeneous cytoarchitecture and participates in both motor and non-motor domains. Indeed, a wealth of evidence from neuroanatomical, electrophysiological, neuroimaging and clinical studies has substantially modified our traditional view on the cerebellum as a sole calibrator of sensorimotor functions. Despite the major advances of the last four decades of cerebellar research, outstanding questions remain regarding the mechanisms and functions of the cerebellar circuitry. We discuss major clues from both experimental and clinical studies, with a focus on rodent models in fear behaviour, on the role of the cerebellum in motor control, on cerebellar contributions to timing and our appraisal of the pathogenesis of cerebellar tremor. The cerebellum occupies a central position to optimize behaviour, motor control, timing procedures and to prevent body oscillations. More than ever, the cerebellum is now considered as a major actor on the scene of disorders affecting the CNS, extending from motor disorders to cognitive and affective disorders. However, the respective roles of the mossy fibres, the climbing fibres, cerebellar cortex and cerebellar nuclei remains unknown or partially known at best in most cases. Research is now moving towards a better definition of the roles of cerebellar modules and microzones. This will impact on the management of cerebellar disorders.
For a long time, cervical dystonia (CD) has been characterised only by disturbances in motor functioning. Despite accumulating evidence for symptomatology in various non-motor domains, to date no study has investigated social cognition in CD. The aim of this study was to compare performance of CD patients and healthy controls in neurocognitive and socio-cognitive domain. Twenty-five non-depressed patients with CD and 26 healthy controls underwent neuropsychological testing. This involved assessment of cognitive status (general intellect, verbal memory, and executive function), and socio-cognitive functions using a Theory of mind task and self-report on empathy and emotion regulation. In comparison to controls, CD patients displayed significantly decreased cognitive abilities, particularly in executive function and verbal memory tasks. Difficulties in inferring mental states on both cognitive and affective levels were also observed. The largest discrepancies were detected in understanding intentionality in others. Poorer performance in cognitive and socio-cognitive tasks was unrelated to severity of the disease. This is the first evidence of compromised socio-cognitive functions in CD patients, highlighting this domain as another facet of non-motor symptoms of this disease. Future studies should advance our understanding of the extent, nature, and time course of these deficits in other aspects of social cognition in this patient population.
- Keywords
- Cervical dystonia, Cognition, Empathy, Social cognition, Theory of mind,
- MeSH
- Empathy MeSH
- Cognition * MeSH
- Middle Aged MeSH
- Humans MeSH
- Neuropsychological Tests MeSH
- Social Perception * MeSH
- Severity of Illness Index MeSH
- Theory of Mind MeSH
- Torticollis drug therapy psychology MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Essential tremor (ET), clinically characterized by postural and kinetic tremors, predominantly in the upper extremities, originates from pathological activity in the dynamic oscillatory network comprising the majority of nodes in the central motor network. Evidence indicates dysfunction in the thalamus, the olivocerebellar loops, and intermittent cortical engagement. Pathology of the cerebellum, a structure with architecture intrinsically predisposed to oscillatory activity, has also been implicated in ET as shown by clinical, neuroimaging, and pathological studies. Despite electrophysiological studies assessing cerebellar impairment in ET being scarce, their impact is tangible, as summarized in this review. The electromyography-magnetoencephalography combination provided the first direct evidence of pathological alteration in cortico-subcortical communication, with a significant emphasis on the cerebellum. Furthermore, complex electromyography studies showed disruptions in the timing of agonist and antagonist muscle activation, a process generally attributed to the cerebellum. Evidence pointing to cerebellar engagement in ET has also been found in electrooculography measurements, cerebellar repetitive transcranial magnetic stimulation studies, and, indirectly, in complex analyses of the activity of the ventral intermediate thalamic nucleus (an area primarily receiving inputs from the cerebellum), which is also used in the advanced treatment of ET. In summary, further progress in therapy will require comprehensive electrophysiological and physiological analyses to elucidate the precise mechanisms leading to disease symptoms. The cerebellum, as a major node of this dynamic oscillatory network, requires further study to aid this endeavor.
- Keywords
- Cerebellum, Dynamic oscillatory network, Electrophysiology, Essential tremor,
- MeSH
- Essential Tremor physiopathology MeSH
- Humans MeSH
- Cerebellum physiopathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Basic epilepsy teachings assert that seizures arise from the cerebral cortex, glossing over infratentorial structures such as the cerebellum that are believed to modulate rather than generate seizures. Nonetheless, ataxia and other clinical findings in epileptic patients are slowly but inevitably drawing attention to this neural node. Tracing the evolution of this line of inquiry from the observed coincidence of cerebellar atrophy and cerebellar dysfunction (most apparently manifested as ataxia) in epilepsy to their close association, this review considers converging clinical, physiological, histological, and neuroimaging evidence that support incorporating the cerebellum into epilepsy pathology. We examine reports of still controversial cerebellar epilepsy, studies of cerebellar stimulation alleviating paroxysmal epileptic activity, studies and case reports of cerebellar lesions directly associated with seizures, and conditions in which ataxia is accompanied by epileptic seizures. Finally, the review substantiates the role of this complex brain structure in epilepsy whether by coincidence, as a consequence of deleterious cortical epileptic activity or antiepileptic drugs, or the very cause of the disease.
- Keywords
- Ataxia, atrophy, epilepsy, seizures, stimulation,
- Publication type
- Journal Article MeSH