Nejvíce citovaný článek - PubMed ID 23701268
Similar circuits but different connectivity patterns between the cerebellum, basal ganglia, and supplementary motor area in early Parkinson's disease patients and controls during predictive motor timing
Although recently conceptualized as a neural node essential for a vast spectrum of associative and cognitive processes, the cerebellum has largely eluded attention in the research of aging, where it is marginalized mainly to structural analyses. In the current cross-sectional study of 67 healthy subjects of various ages (20 to 76 years), we sought to provide a comprehensive, multimodal account of age-related changes in the cerebellum during predictive motor timing, which was previously shown to engage this structure. We combined behavioral assessments of performance with functional MRI and voxel-based morphometry using an advanced method to avoid cerebellar deformation and registration imprecisions inherent to the standard processing at the whole-brain level. Higher age was surprisingly associated with stable behavioral performance during predictive motor timing, despite the massive decrease of infratentorial gray matter volume of a far higher extent than in the supratentorial region, affecting mainly the posterior cerebellar lobe. Nonetheless, this very area showed extensive hyperactivation directly correlated with age. The same region had decreased connectivity with the left caudate and increased connectivity with the left fusiform gyrus, the right pallidum, the hippocampus, and the lingual gyrus. Hence, we propose to extend the scaffolding theory of aging, previously limited mainly to the frontal cortices, to include also the cerebellum, which is likewise suffering from atrophy to a far greater extent than the rest of the brain and is similarly counteracting it by bilateral hyperactivation.
- Klíčová slova
- Cerebellar aging, Functional connectivity, Voxel-based morphometry, fMRI,
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozeček patologie fyziologie MeSH
- pohybová aktivita fyziologie MeSH
- pozornost fyziologie MeSH
- průřezové studie MeSH
- senioři MeSH
- stárnutí patologie fyziologie MeSH
- zdravé stárnutí patologie fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Time perception is an essential element of conscious and subconscious experience, coordinating our perception and interaction with the surrounding environment. In recent years, major technological advances in the field of neuroscience have helped foster new insights into the processing of temporal information, including extending our knowledge of the role of the cerebellum as one of the key nodes in the brain for this function. This consensus paper provides a state-of-the-art picture from the experts in the field of the cerebellar research on a variety of crucial issues related to temporal processing, drawing on recent anatomical, neurophysiological, behavioral, and clinical research.The cerebellar granular layer appears especially well-suited for timing operations required to confer millisecond precision for cerebellar computations. This may be most evident in the manner the cerebellum controls the duration of the timing of agonist-antagonist EMG bursts associated with fast goal-directed voluntary movements. In concert with adaptive processes, interactions within the cerebellar cortex are sufficient to support sub-second timing. However, supra-second timing seems to require cortical and basal ganglia networks, perhaps operating in concert with cerebellum. Additionally, sensory information such as an unexpected stimulus can be forwarded to the cerebellum via the climbing fiber system, providing a temporally constrained mechanism to adjust ongoing behavior and modify future processing. Patients with cerebellar disorders exhibit impairments on a range of tasks that require precise timing, and recent evidence suggest that timing problems observed in other neurological conditions such as Parkinson's disease, essential tremor, and dystonia may reflect disrupted interactions between the basal ganglia and cerebellum.The complex concepts emerging from this consensus paper should provide a foundation for further discussion, helping identify basic research questions required to understand how the brain represents and utilizes time, as well as delineating ways in which this knowledge can help improve the lives of those with neurological conditions that disrupt this most elemental sense. The panel of experts agrees that timing control in the brain is a complex concept in whom cerebellar circuitry is deeply involved. The concept of a timing machine has now expanded to clinical disorders.
- Klíčová slova
- Cerebellum, Climbing fiber, Consensus, Movement, Temporal processing, Timing,
- MeSH
- lidé MeSH
- mozeček fyziologie patofyziologie MeSH
- neurony fyziologie MeSH
- vnímání času fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- konsensus - konference MeSH
The cerebellum has a striking homogeneous cytoarchitecture and participates in both motor and non-motor domains. Indeed, a wealth of evidence from neuroanatomical, electrophysiological, neuroimaging and clinical studies has substantially modified our traditional view on the cerebellum as a sole calibrator of sensorimotor functions. Despite the major advances of the last four decades of cerebellar research, outstanding questions remain regarding the mechanisms and functions of the cerebellar circuitry. We discuss major clues from both experimental and clinical studies, with a focus on rodent models in fear behaviour, on the role of the cerebellum in motor control, on cerebellar contributions to timing and our appraisal of the pathogenesis of cerebellar tremor. The cerebellum occupies a central position to optimize behaviour, motor control, timing procedures and to prevent body oscillations. More than ever, the cerebellum is now considered as a major actor on the scene of disorders affecting the CNS, extending from motor disorders to cognitive and affective disorders. However, the respective roles of the mossy fibres, the climbing fibres, cerebellar cortex and cerebellar nuclei remains unknown or partially known at best in most cases. Research is now moving towards a better definition of the roles of cerebellar modules and microzones. This will impact on the management of cerebellar disorders.
Time perception is an essential part of our everyday lives, in both the prospective and the retrospective domains. However, our knowledge of temporal processing is mainly limited to the networks responsible for comparing or maintaining specific intervals or frequencies. In the presented fMRI study, we sought to characterize the neural nodes engaged specifically in predictive temporal analysis, the estimation of the future position of an object with varying movement parameters, and the contingent neuroanatomical signature of differences in behavioral performance between genders. The established dominant cerebellar engagement offers novel evidence in favor of a pivotal role of this structure in predictive short-term timing, overshadowing the basal ganglia reported together with the frontal cortex as dominant in retrospective temporal processing in the subsecond spectrum. Furthermore, we discovered lower performance in this task and massively increased cerebellar activity in women compared to men, indicative of strategy differences between the genders. This promotes the view that predictive temporal computing utilizes comparable structures in the retrospective timing processes, but with a definite dominance of the cerebellum.
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku MeSH
- mozek fyziologie MeSH
- nervové dráhy fyziologie MeSH
- vnímání času fyziologie MeSH
- vnímání pohybu fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Deficits in the execution of a sequence of movements are common in schizophrenia. Previous studies reported reduced functional activity in the motor cortex and cerebellum in schizophrenic patients with deficits in movement sequencing. The corticospinal tract (CST) and superior cerebellar peduncle (SCP) are fiber tracts that are involved in movement sequencing. However, the integrity of these tracts has not been evaluated in schizophrenic patients with respect to the performance of movement sequencing yet. Diffusion tensor magnetic resonance images (DT-MRI) were acquired from 24 patients with schizophrenia and 23 matched control subjects. Tractography was applied to reconstruct the CST and SCP and DT-MRI-specific parameters such as fractional anisotropy (FA) and radial diffusivity (RD) were reported. The patient group was further subdivided based on the score of sequencing of complex motor acts subscale of the Neurological Evaluation Scale into those with deficits in sequencing motor acts, the SQ(abn) group (n = 7), and those with normal performance, the SQ(norm) group (n = 17). Schizophrenia patients of the SQ(norm) subgroup had significantly reduced FA and increased RD values in the right CST in comparison to the control group; the SQ(abn) subgroup did not differ from the controls. However, the SQ(abn) subgroup showed impaired integrity of the left SCP, whereas the SQ(norm) subgroup did not. Abnormalities in the right CST in the SQ(norm) and in the left SCP in SQ(abn) groups suggest that the patients with SQ(abn) represent subgroups with distinct deficits. Moreover, these results demonstrate the involvement of the SCP in the pathogenesis of movement sequencing in schizophrenia.
- MeSH
- analýza rozptylu MeSH
- anizotropie MeSH
- bílá hmota patologie MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozeček patologie MeSH
- nervové dráhy patologie MeSH
- neurologické vyšetření MeSH
- počítačové zpracování obrazu MeSH
- pohyb fyziologie MeSH
- pohybové poruchy etiologie patologie MeSH
- pons patologie MeSH
- schizofrenie komplikace patologie MeSH
- studie případů a kontrol MeSH
- zobrazování difuzních tenzorů MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH