BACKGROUND: Treponema pallidum subspecies pertenue (TPE) is the causative agent of human and nonhuman primate (NHP) yaws infection. The discovery of yaws bacterium in wild populations of NHPs opened the question of transmission mechanisms within NHPs, and this work aims to take a closer look at the transmission of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Our study determined eleven whole TPE genomes from NHP isolates collected from three national parks in Tanzania: Lake Manyara National Park (NP), Serengeti NP, and Ruaha NP. The bacteria were isolated from four species of NHPs: Chlorocebus pygerythrus (vervet monkey), Cercopithecus mitis (blue monkey), Papio anubis (olive baboon), and Papio cynocephalus (yellow baboon). Combined with previously generated genomes of TPE originating from NHPs in Tanzania (n = 11), 22 whole-genome TPE sequences have now been analyzed. Out of 231 possible combinations of genome-to-genome comparisons, five revealed an unexpectedly high degree of genetic similarity in samples collected from different NHP species, consistent with inter-species transmission of TPE among NHPs. We estimated a substitution rate of TPE of NHP origin, ranging between 1.77 × 10-7 and 3.43 × 10-7 per genomic site per year. CONCLUSIONS/SIGNIFICANCE: The model estimations predicted that the inter-species transmission happened recently, within decades, roughly in an order of magnitude shorter time compared to time needed for the natural diversification of all tested TPE of Tanzanian NHP origin. Moreover, the geographical separation of the sampling sites (NPs) does not preclude TPE transmission between and within NHP species.
- MeSH
- Chlorocebus aethiops MeSH
- Cercopithecus microbiology MeSH
- Yaws * microbiology transmission MeSH
- Phylogeny * MeSH
- Genome, Bacterial MeSH
- Humans MeSH
- Monkey Diseases microbiology transmission MeSH
- Papio anubis microbiology MeSH
- Papio cynocephalus microbiology genetics MeSH
- Primates microbiology MeSH
- Whole Genome Sequencing * MeSH
- Treponema pallidum genetics isolation & purification classification MeSH
- Treponema MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Tanzania MeSH
The treponemes infecting lagomorphs include Treponema paraluisleporidarum ecovar Cuniculus (TPeC) and ecovar Lepus (TPeL), infecting rabbits and hares, respectively. In this study, we described the first complete genome sequence of TPeL, isolate V3603-13, from an infected mountain hare (Lepus timidus) in Sweden. In addition, we determined 99.0% of the genome sequence of isolate V246-08 (also from an infected mountain hare, Sweden) and 31.7% of the genome sequence of isolate Z27 A77/78 (from a European hare, Lepus europeaus, The Netherlands). The TPeL V3603-13 genome had considerable gene synteny with the TPeC Cuniculi A genome and with the human pathogen T. pallidum, which causes syphilis (ssp. pallidum, TPA), yaws (ssp. pertenue, TPE) and endemic syphilis (ssp. endemicum, TEN). Compared to the TPeC Cuniculi A genome, TPeL V3603-13 contained four insertions and 11 deletions longer than three nucleotides (ranging between 6 and2,932 nts). In addition, there were 25 additional indels, from one to three nucleotides long, altogether spanning 36 nts. The number of single nucleotide variants (SNVs) between TPeC Cuniculi A and TPeL V3603-13 were represented by 309 nucleotide differences. Major proteome coding differences between TPeL and TPeC were found in the tpr gene family, and (predicted) genes coding for outer membrane proteins, suggesting that these components are essential for host adaptation in lagomorph syphilis. The phylogeny revealed that the TPeL sample from the European brown hare was more distantly related to TPeC Cuniculi A than V3603-13 and V246-08.
- MeSH
- Phylogeny * MeSH
- Genome, Bacterial MeSH
- Rabbits MeSH
- Syphilis * microbiology MeSH
- Treponema * genetics isolation & purification MeSH
- Hares * microbiology MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Syphilis is a multistage sexually transmitted disease caused by Treponema pallidum ssp. pallidum. In the Czech Republic, there are around 700-800 new syphilis cases annually, continuously increasing since 2012. This study analyzed a total of 1228 samples from 2004 to 2022. Of the PCR-positive typeable samples (n = 415), 68.7% were fully-typed (FT), and 31.3% were partially-typed. Most of the identified isolates belonged to the SS14-clade and only 6.3% were the Nichols-like cluster. While in the beginning of sample collection isolates have been macrolide-susceptible, recent isolates are completely resistant to macrolides. Among the FT samples, 34 different allelic profiles (APs) were found. Most of the profiles (n = 27) appeared just once in the Czech population, while seven profiles were detected more than twice. The most frequent APs belonged to two separate groups of SS14-like isolates, including group of 1.3.1 (ST 1) and 1.26.1 (ST 25) profiles, and the second group containing 1.1.8 (ST 3), 1.1.1 (ST 2), and 1.1.3 (ST 11) (representing 57.5%, and 25.3% of all detected APs, respectively). Both groups consistently differed in 6 nucleotide positions in five genes (TP0150, TP0324, TP0515, TP0548, and TP0691) coding amino-acid replacements suggesting that one or more of these differences could be involved in the higher success of the first group.
- MeSH
- Alleles * MeSH
- Adult MeSH
- Genotype MeSH
- Middle Aged MeSH
- Humans MeSH
- Macrolides pharmacology MeSH
- Multilocus Sequence Typing * MeSH
- Syphilis * microbiology epidemiology genetics MeSH
- Treponema pallidum * genetics isolation & purification MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Macrolides MeSH
In this work, we determined that Treponema pallidum subsp. pallidum (TPA) DAL-1 (belonging to Nichols-like group of TPA strains) grew 1.53 (± 0.08) times faster compared to TPA Philadelphia 1 (SS14-like group) during in vitro cultivations. In longitudinal individual propagation in rabbit testes (n = 12, each TPA strain), infection with DAL-1 manifested clinical symptoms (induration, swelling, and erythema of testes) sooner than Philadelphia 1 infection, which resulted in a significantly shorter period of the experimental passages for DAL-1 (median = 15.0 and 23.5 days, respectively; p < 0.01). To minimize the confounding conditions during rabbit experiments, the growth characteristics of DAL-1 and Philadelphia 1 strains were determined during TPA co-infection of rabbit testes (n = 20, including controls). During two weeks of intratesticular co-infection, DAL-1 overgrew Philadelphia 1 in all twelve testes, regardless of inoculation ratio and dose (median of relative excess DAL-1 multiplication = 84.85×). Moreover, higher DAL-1 to Philadelphia 1 inoculum ratios appeared to increase differences in growth rates, suggesting direct competition between strains for available nutrients during co-infection. These experiments indicate important physiological differences between the two TPA strains and suggest growth differences between Nichols-like and SS14-like strains that are potentially linked to their virulence and pathogenicity.
- MeSH
- Rabbits MeSH
- Syphilis microbiology pathology MeSH
- Testis microbiology metabolism MeSH
- Treponema pallidum * MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Syphilis is an ancient disease of humans and lagomorphs caused by two distinct but genetically closely related bacteria (>98% sequence identity based on the whole genome) of the genus Treponema. While human syphilis is well studied, little is known about the disease in the lagomorph host. Yet, comparative studies are needed to understand mechanisms in host-pathogen coevolution in treponematoses. Importantly, Treponema paraluisleporidarum-infected hare populations provide ample opportunity to study the syphilis-causing pathogen in a naturally infected model population without antibiotic treatment, data that cannot be obtained from syphilis infection in humans. We provide data on genetic diversity and are able to highlight various types of repetitions in one of the two hypervariable regions at the tp0548 locus that have not been described in the human syphilis-causing sister bacterium Treponema pallidum subsp. pallidum.
- Keywords
- European brown hare, Lepus, One Health, Oryctolagus, Treponema pallidum, rabbit, spirochetes, syphilis,
- MeSH
- Genetic Variation MeSH
- Lagomorpha * MeSH
- Humans MeSH
- Prevalence MeSH
- Syphilis * epidemiology microbiology MeSH
- Treponema pallidum MeSH
- Treponema genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Rabbit venereal spirochetosis, a disease caused by Treponema paraluisleporidarum ecovar Cuniculus (TPeC), affects both wild and pet rabbits, and is transmitted sexually and via direct contact among animals. Treatment of syphilis in pet rabbits requires administration of antibiotics, including penicillin G, chloramphenicol, or fluoroquinolones. The aim of this work was to elucidate the cause of penicillin treatment failure in rabbit syphilis in a pet rabbit treated in Brno, Czech Republic, and to assess the phylogenetic relatedness of the agent to previously characterized pathogenic treponemes. Following amputation of the infected digits, the second round of penicillin treatment using the same dosage and application route resulted in the disappearance of clinical symptoms within a period of two weeks. The bacterium was successfully isolated from the claws, propagated in three experimental rabbits, and the resulting TPeC strain was designated as Cz-2020. Analysis of four genetic loci revealed that the Cz-2020 strain was similar but also clearly distinct from the only TPeC strain, which had been characterized in detail to date, i.e., the Cuniculi A strain, which was isolated in North America. The strain Cz-2020 represents the first available viable TPeC strain of European origin. DNA sequences encoding five penicillin-binding proteins of the strain Cz-2020 were compared to those of Cuniculi A, which is known to be sensitive to penicillin. The sequences differed in six nucleotides resulting in single amino acid changes in Penicillin-binding protein 1, 2, and 3. Since the second round of treatment was successful, we conclude that the penicillin treatment failure in the first round resulted from the presence of infection foci in claws where treponemes persisted.
- Keywords
- Oryctolagus cuniculus, dermatitis, in vivo propagation, penicillin, rabbit, sexually transmitted diseases, syphilis,
- Publication type
- Journal Article MeSH
Treponema pallidum subsp. endemicum (TEN) is the causative agent of endemic syphilis (bejel). Until now, only a single TEN strain, Bosnia A, has been completely sequenced. The only other laboratory TEN strain available, Iraq B, was isolated in Iraq in 1951 by researchers from the US Centers for Disease Control and Prevention. In this study, the complete genome of the Iraq B strain was amplified as overlapping PCR products and sequenced using the pooled segment genome sequencing method and Illumina sequencing. Total average genome sequencing coverage reached 3469×, with a total genome size of 1,137,653 bp. Compared to the genome sequence of Bosnia A, a set of 37 single nucleotide differences, 4 indels, 2 differences in the number of tandem repetitions, and 18 differences in the length of homopolymeric regions were found in the Iraq B genome. Moreover, the tprF and tprG genes that were previously found deleted in the genome of the TEN Bosnia A strain (spanning 2.3 kb in length) were present in a subpopulation of TEN Iraq B and Bosnia A microbes, and their sequence was highly similar to those found in T. p. subsp. pertenue strains, which cause the disease yaws. The genome sequence of TEN Iraq B revealed close genetic relatedness between both available bejel-causing laboratory strains (i.e., Iraq B and Bosnia A) and also genetic variability within the bejel treponemes comparable to that found within yaws- or syphilis-causing strains. In addition, genetic relatedness to TPE strains was demonstrated by the sequence of the tprF and tprG genes found in subpopulations of both TEN Iraq B and Bosnia A. The loss of the tprF and tprG genes in most TEN microbes suggest that TEN genomes have been evolving via the loss of genomic regions, a phenomenon previously found among the treponemes causing both syphilis and rabbit syphilis.
- MeSH
- Genes, Bacterial MeSH
- Yaws microbiology MeSH
- Phylogeny MeSH
- Genome, Bacterial MeSH
- Treponemal Infections microbiology MeSH
- Bacterial Outer Membrane Proteins genetics MeSH
- Whole Genome Sequencing MeSH
- Syphilis microbiology MeSH
- Treponema pallidum genetics MeSH
- Treponema genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Bosnia and Herzegovina MeSH
- Names of Substances
- Bacterial Outer Membrane Proteins MeSH
Syphilis, caused by Treponema pallidum subsp. pallidum (TPA), remains an important public health problem with an increasing worldwide prevalence. Despite recent advances in in vitro cultivation, genetic variability of this pathogen during infection is poorly understood. Here, we present contemporary and geographically diverse complete treponemal genome sequences isolated directly from patients using a methyl-directed enrichment prior to sequencing. This approach reveals that approximately 50% of the genetic diversity found in TPA is driven by inter- and/or intra-strain recombination events, particularly in strains belonging to one of the defined genetic groups of syphilis treponemes: Nichols-like strains. Recombinant loci were found to encode putative outer-membrane proteins and the recombination variability was almost exclusively found in regions predicted to be at the host-pathogen interface. Genetic recombination has been considered to be a rare event in treponemes, yet our study unexpectedly showed that it occurs at a significant level and may have important impacts in the biology of this pathogen, especially as these events occur primarily in the outer membrane proteins. This study reveals the existence of strains with different repertoires of surface-exposed antigens circulating in the current human population, which should be taken into account during syphilis vaccine development.
BACKGROUND: Pathogenic treponemes related to Treponema pallidum are both human (causing syphilis, yaws, bejel) and animal pathogens (infections of primates, venereal spirochetosis in rabbits). A set of 11 treponemal genome sequences including those of five Treponema pallidum ssp. pallidum (TPA) strains (Nichols, DAL-1, Mexico A, SS14, Chicago), four T. p. ssp. pertenue (TPE) strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), one T. p. ssp. endemicum (TEN) strain (Bosnia A) and one strain (Cuniculi A) of Treponema paraluisleporidarum ecovar Cuniculus (TPeC) were tested for the presence of positively selected genes. METHODOLOGY/PRINCIPAL FINDINGS: A total of 1068 orthologous genes annotated in all 11 genomes were tested for the presence of positively selected genes using both site and branch-site models with CODEML (PAML package). Subsequent analyses with sequences obtained from 62 treponemal draft genomes were used for the identification of positively selected amino acid positions. Synthetic biotinylated peptides were designed to cover positively selected protein regions and these peptides were tested for reactivity with the patient's syphilis sera. Altogether, 22 positively selected genes were identified in the TP genomes and TPA sets of positively selected genes differed from TPE genes. While genetic variability among TPA strains was predominantly present in a number of genetic loci, genetic variability within TPE and TEN strains was distributed more equally along the chromosome. Several syphilitic sera were shown to react with some peptides derived from the protein sequences evolving under positive selection. CONCLUSIONS/SIGNIFICANCE: The syphilis-, yaws-, and bejel-causing strains differed relative to sets of positively selected genes. Most of the positively selected chromosomal loci were identified among the TPA treponemes. The local accumulation of genetic variability suggests that the diversification of TPA strains took place predominantly in a limited number of genomic regions compared to the more dispersed genetic diversity differentiating TPE and TEN strains. The identification of positively selected sites in tpr genes and genes encoding outer membrane proteins suggests their role during infection of human and animal hosts. The driving force for adaptive evolution at these loci thus appears to be the host immune response as supported by observed reactivity of syphilitic sera with some peptides derived from protein sequences showing adaptive evolution.
- MeSH
- Genes, Bacterial * MeSH
- Adaptation, Biological * MeSH
- Adult MeSH
- Genomics MeSH
- Genotype * MeSH
- Humans MeSH
- Young Adult MeSH
- Selection, Genetic MeSH
- Syphilis microbiology pathology MeSH
- Treponema pallidum classification genetics isolation & purification MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Treponema pallidum subsp. pallidum is the causative agent of syphilis, a sexually transmitted disease with worldwide prevalence. Several different molecular typing schemes are currently available for this pathogen. To enable population biology studies of the syphilis agent and for epidemiological surveillance at the global scale, a harmonized typing tool needs to be introduced. Recently, we published a new multi-locus sequence typing (MLST) with the potential to significantly enhance the epidemiological data in several aspects (e.g., distinguishing genetically different clades of syphilis, subtyping inside these clades, and finally, distinguishing different subspecies of non-cultivable pathogenic treponemes). In this short report, we introduce the PubMLST database for treponemal DNA data storage and for assignments of allelic profiles and sequencing types. Moreover, we have summarized epidemiological data of all treponemal strains (n = 358) with available DNA sequences in typing loci and found several association between genetic groups and characteristics of patients. This study proposes the establishment of a single MLST of T. p. pallidum and encourages researchers and public health communities to use this PubMLST database as a universal tool for molecular typing studies of the syphilis pathogen.
- Keywords
- Molecular typing, PubMLST, Treponema pallidum subsp. pallidum,
- Publication type
- Journal Article MeSH