Most cited article - PubMed ID 24220087
Introgressive hybridization as a promoter of genome reshuffling in natural homoploid fish hybrids (Cyprinidae, Leuciscinae)
The bighead carps of the genus Hypophthalmichthys (H. molitrix and H. nobilis) are important aquaculture species. They were subjected to extensive multidisciplinary research, but with cytogenetics confined to conventional protocols only. Here, we employed Giemsa-/C-/CMA3- stainings and chromosomal mapping of multigene families and telomeric repeats. Both species shared (i) a diploid chromosome number 2n = 48 and the karyotype structure, (ii) low amount of constitutive heterochromatin, (iii) the absence of interstitial telomeric sites (ITSs), (iv) a single pair of 5S rDNA loci adjacent to one major rDNA cluster, and (v) a single pair of co-localized U1/U2 snDNA tandem repeats. Both species, on the other hand, differed in (i) the presence/absence of remarkable interstitial block of constitutive heterochromatin on the largest acrocentric pair 11 and (ii) the number of major (CMA3-positive) rDNA sites. Additionally, we applied here, for the first time, the conventional cytogenetics in H. harmandi, a species considered extinct in the wild and/or extensively cross-hybridized with H. molitrix. Its 2n and karyotype description match those found in the previous two species, while silver staining showed differences in distribution of major rDNA. The bighead carps thus represent another case of taxonomic diversity not associated with gross karyotype differentiation, where 2n and karyotype structure cannot help in distinguishing between genomes of closely related species. On the other hand, we demonstrated that two cytogenetic characters (distribution of constitutive heterochromatin and major rDNA) may be useful for diagnosis of pure species. The universality of these markers must be further verified by analyzing other pure populations of bighead carps.
- Keywords
- East Asian cypriniform fishes, FISH, chromosome banding, comparative fish cytogenetics, cytotaxonomy, rDNA, snDNA,
- MeSH
- Cell Differentiation genetics MeSH
- Cytogenetics methods MeSH
- Phylogeny * MeSH
- Genetic Variation genetics MeSH
- Heterochromatin genetics MeSH
- In Situ Hybridization, Fluorescence MeSH
- Carps genetics MeSH
- Karyotype * MeSH
- Karyotyping methods MeSH
- Chromosome Mapping MeSH
- DNA, Ribosomal genetics MeSH
- Tandem Repeat Sequences genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Heterochromatin MeSH
- DNA, Ribosomal MeSH
The catfish family Siluridae contains 107 described species distributed in Asia, but with some distributed in Europe. In this study, karyotypes and other chromosomal characteristics of 15 species from eight genera were examined using conventional and molecular cytogenetic protocols. Our results showed the diploid number (2n) to be highly divergent among species, ranging from 2n = 40 to 92, with the modal frequency comprising 56 to 64 chromosomes. Accordingly, the ratio of uni- and bi-armed chromosomes is also highly variable, thus suggesting extensive chromosomal rearrangements. Only one chromosome pair bearing major rDNA sites occurs in most species, except for Wallago micropogon, Ompok siluroides, and Kryptoterus giminus with two; and Silurichthys phaiosoma with five such pairs. In contrast, chromosomes bearing 5S rDNA sites range from one to as high as nine pairs among the species. Comparative genomic hybridization (CGH) experiments evidenced large genomic divergence, even between congeneric species. As a whole, we conclude that karyotype features and chromosomal diversity of the silurid catfishes are unusually extensive, but parallel some other catfish lineages and primary freshwater fish groups, thus making silurids an important model for investigating the evolutionary dynamics of fish chromosomes.
- Keywords
- CGH, FISH, chromosome banding, fish cytotaxonomy, rDNA classes,
- MeSH
- Cytogenetic Analysis MeSH
- Genetic Variation * MeSH
- Genome * MeSH
- Genomics * methods MeSH
- In Situ Hybridization, Fluorescence MeSH
- Karyotype * MeSH
- Chromosome Banding MeSH
- Repetitive Sequences, Nucleic Acid * MeSH
- Comparative Genomic Hybridization MeSH
- Catfishes classification genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Polyploidy, although still poorly explored, represents an important evolutionary event in several cyprinid clades. Herein, Catlocarpio siamensis and Probarbus jullieni - representatives of the paleotetraploid tribe Probarbini, were characterized both by conventional and molecular cytogenetic methods. RESULTS: Alike most other paleotetraploid cyprinids (with 2n = 100), both species studied here shared 2n = 98 but differed in karyotypes: C. siamensis displayed 18m + 34sm + 46st/a; NF = 150, while P. jullieni exhibited 26m + 14sm + 58st/a; NF = 138. Fluorescence in situ hybridization (FISH) with rDNA probes revealed two (5S) and eight (18S) signals in C. siamensis, respectively, and six signals for both probes in P. jullieni. FISH with microsatellite motifs evidenced substantial genomic divergence between both species. The almost doubled size of the chromosome pairs #1 in C. siamensis and #14 in P. jullieni compared to the rest of corresponding karyotypes indicated chromosomal fusions. CONCLUSION: Based on our findings, together with likely the same reduced 2n = 98 karyotypes in the remainder Probarbini species, we hypothesize that the karyotype 2n = 98 might represent a derived character, shared by all members of the Probarbini clade. Besides, we also witnessed considerable changes in the amount and distribution of certain repetitive DNA classes, suggesting complex post-polyploidization processes in this small paleotetraploid tribe.
- Keywords
- Chromosomal markers, Cyprinidae, Fish cytogenetics, Microsatellites, rDNAs,
- Publication type
- Journal Article MeSH
Interspecific hybridization, polyploidization and transitions from sexuality to asexuality considerably affect organismal genomes. Especially the last mentioned process has been assumed to play a significant role in the initiation of chromosomal rearrangements, causing increased rates of karyotype evolution. We used cytogenetic analysis and molecular dating of cladogenetic events to compare the rate of changes of chromosome morphology and karyotype in asexually and sexually reproducing counterparts in European spined loach fish (Cobitis). We studied metaphases of three sexually reproducing species and their diploid and polyploid hybrid clones of different age of origin. The material includes artificial F1 hybrid strains, representatives of lineage originated in Holocene epoch, and also individuals of an oldest known age to date (roughly 0.37 MYA). Thereafter we applied GISH technique as a marker to differentiate parental chromosomal sets in hybrids. Although the sexual species accumulated remarkable chromosomal rearrangements after their speciation, we observed no differences in chromosome numbers and/or morphology among karyotypes of asexual hybrids. These hybrids possess chromosome sets originating from respective parental species with no cytogenetically detectable recombinations, suggesting their integrity even in a long term. The switch to asexual reproduction thus did not provoke any significant acceleration of the rate of chromosomal evolution in Cobitis. Asexual animals described in other case studies reproduce ameiotically, while Cobitis hybrids described here produce eggs likely through modified meiosis. Therefore, our findings indicate that the effect of asexuality on the rate of chromosomal change may be context-dependent rather than universal and related to particular type of asexual reproduction.
- MeSH
- Biological Evolution * MeSH
- Diploidy * MeSH
- Karyotype * MeSH
- Cypriniformes genetics MeSH
- Reproduction, Asexual genetics MeSH
- Triploidy * MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Loaches of the family Nemacheilidae are one of the most speciose elements of Palearctic freshwater ichthyofauna and have undergone rapid ecological adaptations and colonizations. Their cytotaxonomy is largely unexplored; with the impact of cytogenetical changes on this evolutionary diversification still unknown. An extensive cytogenetical survey was performed in 19 nemacheilid species using both conventional (Giemsa staining, C- banding, Ag- and Chromomycin A3/DAPI stainings) and molecular (fluorescence in situ hybridization with 5S rDNA, 45S rDNA, and telomeric (TTAGGG)n probes) methods. A phylogenetic tree of the analysed specimens was constructed based on one mitochondrial (cytochrome b) and two nuclear (RAG1, IRBP) genes. RESULTS: Seventeen species showed karyotypes composed of 2n = 50 chromosomes but differentiated by fundamental chromosome number (NF = 68-90). Nemachilichthys ruppelli (2n = 38) and Schistura notostigma (2n = 44-48) displayed reduced 2n with an elevated number of large metacentric chromosomes. Only Schistura fasciolata showed morphologically differentiated sex chromosomes with a multiple system of the XY1Y2 type. Chromomycin A3 (CMA3)- fluorescence revealed interspecific heterogeneity in the distribution of GC-rich heterochromatin including its otherwise very rare association with 5S rDNA sites. The 45S rDNA sites were mostly located on a single chromosome pair contrasting markedly with a pattern of two (Barbatula barbatula, Nemacheilus binotatus, N. ruppelli) to 20 sites (Physoschistura sp.) of 5S rDNA. The cytogenetic changes did not follow the phylogenetic relationships between the samples. A high number of 5S rDNA sites was present in species with small effective population sizes. CONCLUSION: Despite a prevailing conservatism of 2n, Nemacheilidae exhibited a remarkable cytogenetic variability on microstructural level. We suggest an important role for pericentric inversions, tandem and centric fusions in nemacheilid karyotype differentiation. Short repetitive sequences, genetic drift, founder effect, as well as the involvement of transposable elements in the dispersion of ribosomal DNA sites, might also have played a role in evolutionary processes such as reproductive isolation. These remarkable dynamics of their genomes qualify river loaches as a model for the study of the cytogenetic background of major evolutionary processes such as radiation, endemism and colonization of a wide range of habitats.
- MeSH
- Phylogeny MeSH
- Heterochromatin * MeSH
- In Situ Hybridization, Fluorescence MeSH
- Karyotyping veterinary MeSH
- Cypriniformes classification genetics MeSH
- Rivers MeSH
- DNA, Ribosomal genetics MeSH
- DNA Transposable Elements MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Heterochromatin * MeSH
- DNA, Ribosomal MeSH
- DNA Transposable Elements MeSH
BACKGROUND: Iberian Leuciscinae are greatly diverse comprising taxa of hybrid origin. With highly conservative karyotypes, Iberian Chondrostoma s.l. have recently demonstrated sub-chromosomal differentiation and rapid genome restructuring in natural hybrids, which was confirmed by ribosomal DNA (rDNA) transposition and/or multiplication. To understand the role of repetitive DNAs in the differentiation of their genomes, a genetic and molecular cytogenetic survey was conducted in Achondrostoma oligolepis, Anaecypris hispanica, Iberochondrostoma lemmingii, I. lusitanicum, Pseudochondrostoma duriense, P. polylepis, Squalius pyrenaicus and hybrids between A. oligolepis x (P. duriense/P. polylepis), representing 'alburnine', chondrostomine and Squalius lineages. RESULTS: Partial Rex3 sequences evidenced high sequence homology among Leuciscinae (≥98 %) and different fish families (80-95 %) proposing a relatively recent activity of these elements in the species inspected. Low nucleotide substitution rates (<20 %) and intact ORFs suggests that Rex3 may in fact be active in these genomes. The chromosomal distribution of Rex3 retroelement was found highly concentrated at pericentromeric and moderately at subtelomeric blocks, co-localizing with 5S rDNA loci, and correlating with blocks of heterochromatin and C0t-1 DNA. This accumulation was evident in at least 10 chromosome pairs, a pattern that seemed to be shared among the different species, likely pre-dating their divergence. Nevertheless, species-specific clusters were detected in I. lusitanicum, P. duriense, P. polylepis and S. pyrenaicus demonstrating rapid and independent differentiation. Natural hybrids followed the same patterns of accumulation and association with repetitive sequences. An increased number of Rex3 clusters now associating also with translocated 45S rDNA clusters vouched for other genomic rearrangements in hybrids. Rex3 sequence phylogeny did not agree with its hosts' phylogeny but the observed distribution pattern is congruent with an evolutionary tendency to protect its activity, a robust regulatory system and/or events of horizontal transfer. CONCLUSIONS: This is the first report directed at retroelement physical mapping in Cyprinidae. It helped outlining conceivable ancestral homologies and recognizing retrotransposon activation in hybrids, being possibly associated with genome diversification within the subfamily. The extensive diversity of Iberian Leuciscinae makes them excellent candidates to explore the processes and mechanisms behind the great plasticity distinguishing vertebrate genomes.
- Keywords
- Anaecypris hispanica, C0t-1 DNA, Chondrostoma s.l. sp, Fish hybrids, Karyotype differentiation, Squalius pyrenaicus, Transposable elements,
- Publication type
- Journal Article MeSH