Nejvíce citovaný článek - PubMed ID 24232383
Autotetraploids of Vicia cracca show a higher allelic richness in natural populations and a higher seed set after artificial selfing than diploids
Exploring the fitness consequences of whole-genome multiplication (WGM) is essential for understanding the establishment of autopolyploids in diploid parental populations, but suitable model systems are rare. We examined the impact of WGM on reproductive traits in three major cytotypes (2x, 3x, 4x) of Pilosella rhodopea, a species with recurrent formation of neo-autopolyploids in mixed-ploidy populations. We found that diploids had normal female sporogenesis and gametogenesis, high fertility, and produced predominantly euploid seed progeny. By contrast, autopolyploids had highly disturbed developmental programs that resulted in significantly lower seed set and a high frequency of aneuploid progeny. All cytotypes, but particularly triploids, produced gametes of varying ploidy, including unreduced ones, that participated in frequent intercytotype mating. Noteworthy, the reduced investment in sexual reproduction in autopolyploids was compensated by increased production of axillary rosettes and the novel expression of two clonal traits: adventitious rosettes on roots (root-sprouting), and aposporous initial cells in ovules which, however, do not result in functional apomixis. The combination of increased vegetative clonal growth in autopolyploids and frequent intercytotype mating are key mechanisms involved in the formation and maintenance of the largest diploid-autopolyploid primary contact zone ever recorded in angiosperms.
- Klíčová slova
- aneuploidy, apospory, clonality, mixed-ploidy, root-sprouting, unreduced gametes,
- MeSH
- diploidie MeSH
- fertilita * MeSH
- ploidie * MeSH
- polyploidie MeSH
- rozmnožování MeSH
- semena rostlinná MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The contents of photosynthetic pigments are an important indicator of many processes taking place in the plant body. Still, however, our knowledge of the effects of polyploidization, a major driver of speciation in vascular plants, on the contents of photosynthetic pigments is very sparse. We compared the contents of photosynthetic pigments among natural diploids, natural tetraploids, and synthetic tetraploids. The material originated from four natural mixed-cytotype populations of diploid and autotetraploid Vicia cracca (Fabaceae) occurring in the contact zone between the cytotypes in Central Europe and was cultivated under uniform conditions. We explored whether the contents of pigments are primarily driven by polyploidization or by subsequent evolution of the polyploid lineage and whether the patterns differ between populations. We also explored the relationship between pigment contents and plant performance. We found very few significant effects of the cytotype on the individual pigments but many significant interactions between the cytotype and the population. In pair-wise comparisons, many comparisons were not significant. The prevailing pattern among the significant once was that the contents of pigments were determined by polyploidization rather than by subsequent evolution of the polyploid lineage. The contents of the pigments turned out to be a useful predictor of plant performance not only at the time of material collection, but also at the end of the growing season. Further studies exploring differences in the contents of photosynthetic pigments in different cytotypes using replicated populations and assessing their relationship to plant performance are needed to assess the generality of our findings.
- Klíčová slova
- Carotenoids, Colchicine, Legume, Photoprotective pigments, Plant performance, Synthetic polyploids,
- MeSH
- biologické pigmenty genetika metabolismus MeSH
- diploidie MeSH
- fotosyntéza genetika MeSH
- polyploidie MeSH
- tetraploidie MeSH
- vikev genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- biologické pigmenty MeSH
BACKGROUND AND AIMS: Understanding the consequences of polyploidization is a major step towards assessing the importance of this mode of speciation. Most previous studies comparing different cytotypes, however, did so only within a single environment and considered only one group of traits. To take a step further, we need to explore multiple environments and a wide range of traits. The aim of this study was to assess response of diploid and autotetraploid individuals of Knautia arvensis (Dipsacaceae) to two stress conditions, shade or drought. METHODS: We studied eleven photosynthetic, morphological and fitness parameters of the plants over three years in a common garden under ambient conditions and two types of stress. KEY RESULTS: The results indicate strong differences in performance and physiology between cytotypes in ambient conditions. Interestingly, higher fitness in diploids contrasted with more efficient photosynthesis in tetraploids in ambient conditions. However, stress, especially drought, strongly reduced fitness and disrupted function of the photosystems in both cytotypes reducing the between cytotype differences. The results indicate that drought stress reduced function of the photosynthetic processes in both cytotypes but particularly in tetraploids, while fitness reduction was stronger in diploids. CONCLUSIONS: The photosynthesis related traits show higher plasticity in polyploids as theoretically expected, while the fitness related traits show higher plasticity in diploids especially in response to drought. This suggests that between cytotype comparisons need to consider multiple traits and multiple environments to understand the breath of possible responses of different cytotypes to stress. They also show that integrating results based on different traits is not straightforward and call for better mechanistic understanding of the relationships between species photosynthetic activity and fitness. Still, considering multiple environments and multiple species traits is crucial for understanding the drivers of niche differentiation between cytotypes in future studies.
- MeSH
- fyziologický stres * MeSH
- fyziologie rostlin * MeSH
- pastviny * MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Understanding the direct consequences of polyploidization is necessary for assessing the evolutionary significance of this mode of speciation. Previous studies have not studied the degree of between-population variation that occurs due to these effects. Although it is assumed that the effects of the substances that create synthetic polyploids disappear in second-generation synthetic polyploids, this has not been tested. METHODS: The direct consequences of polyploidization were assessed and separated from the effects of subsequent evolution in Vicia cracca , a naturally occurring species with diploid and autotetraploid cytotypes. Synthetic tetraploids were created from diploids of four mixed-ploidy populations. Performance of natural diploids and tetraploids was compared with that of synthetic tetraploids. Diploid offspring of the synthetic tetraploid mothers were also included in the comparison. In this way, the effects of colchicine application in the maternal generation on offspring performance could be compared independently of the effects of polyploidization. KEY RESULTS: The sizes of seeds and stomata were primarily affected by cytotype, while plant performance differed between natural and synthetic polyploids. Most performance traits were also determined by colchicine application to the mothers, and most of these results were largely population specific. CONCLUSIONS: Because the consequences of colchicine application are still apparent in the second generation of the plants, at least the third-generation polyploids should be considered in future comparisons. The specificities of the colchicine-treated plants may also be caused by strong selection pressures during the creation of synthetic polyploids. This could be tested by comparing the initial sizes of plants that survived the colchicine treatments with those of plants that did not. High variation between populations also suggests that different polyploids follow different evolutionary trajectories, and this should be considered when studying the effects of polyploidization.
- Klíčová slova
- Anti-mitotic agent, Fabaceae, common garden experiment, flow cytometry, individual growth rate, neopolyploid, reproductive fitness, trait evolution,
- MeSH
- diploidie MeSH
- kolchicin farmakologie MeSH
- molekulární evoluce MeSH
- polyploidie * MeSH
- tetraploidie MeSH
- vikev účinky léků genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kolchicin MeSH
Vicia cracca diploids and autotetraploids are highly parapatric in Europe; tetraploids reside in western and northern part, whereas diploids occupy much drier south-eastern part. They meet together in a Central European contact zone. This distribution pattern raised questions about a transformative effect of polyploidization on plant performance and environmental tolerances. We investigated plant survival, growth, and seed production in two water regimes in a common garden experiment using seeds collected from five localities in the Central European contact zone where diploids and tetraploids occur in sympatry. Obtained data imply that tetraploids of V. cracca are not generally superior in performance to diploids. Significantly larger seeds from tetraploid mother plants collected in the field were not correlated with greater stature of the seedlings. Nonetheless, tetraploids might have a potential to out-compete diploids in the long run due to the tetraploids' ability of greater growth which manifested in the second year of cultivation. Considering the response of diploids and tetraploids to water supply, drought stressed tetraploids but not diploids produced a higher proportion of aborted seeds than watered ones, which implies that tetraploids are more drought susceptible than diploids. On the other hand, decreased plant height in drought stresses tetraploids, which simultaneously increased total seed production, may suggest that tetraploids have a greater ability to avoid local extinction under unfavourable conditions by enhancing biomass allocation into production of seeds at the cost of lower growth. The significant interaction between ploidy level and locality in several traits suggests possible polyfyletic origin of tetraploids and the necessity to clarify the history of the tetraploids in Europe.
- Klíčová slova
- Drought stress, Polyploid, Seed production, Seed weight, Sympatric, Vegetative growth,
- MeSH
- biomasa MeSH
- diploidie MeSH
- ploidie MeSH
- semena rostlinná genetika růst a vývoj MeSH
- semenáček genetika růst a vývoj MeSH
- sympatrie MeSH
- tetraploidie MeSH
- vikev genetika růst a vývoj MeSH
- zahrady MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Previous studies demonstrated the effects of polyploidy on various aspects of plant life. It is, however, difficult to determine which plant characteristics are responsible for fitness differences between cytotypes. We assessed the relationship between polyploidy and seed production. To separate the effects of flowering phenology, flower head size and herbivores from other possible causes, we collected data on these characteristics in single flower heads of diploid and tetraploid Centaurea phrygia in an experimental garden. We used structural equation modelling to identify the main pathways determining seed production. The results showed that the relationship between polyploidy and seed production is mediated by most of the studied factors. The different factors acted in opposing directions. Wider flower heads displayed higher above the ground suggested higher seed production in diploids. In contrast, earlier flowering and a lower abundance of herbivores suggested higher seed production in tetraploids. However, because phenology was the strongest driver of seed production in this system, the sum of all the pathways suggested greater seed production in tetraploids than in diploids. The pathway linking ploidy level directly to seed production, representing unstudied factors, was not significant. This suggests that the factors studied likely are drivers of the between-cytotype differences. Overall, this study demonstrated that tetraploids possess overall higher fitness estimated as seed production. Regardless of the patterns observed here, strong between year fluctuations in the composition and diversity of insect communities have been observed. The direction of the selection may thus vary between years. Consequently, understanding the structure of the interactions is more important for understanding the system than the overall effects of cytotype on a fitness trait in a specific year. Such knowledge can be used to model the evolution of species traits and plant-herbivore and plant-pollinator interactions in diploid-polyploid systems.
- Klíčová slova
- AMOS, Asteraceae, Carduoideae, pollinators, polyploid, pre-dispersal seed predation, seed set, structural equation modelling,
- Publikační typ
- časopisecké články MeSH
Due to increased levels of heterozygosity, polyploids are expected to have a greater ability to adapt to different environments than their diploid ancestors. While this theoretical pattern has been suggested repeatedly, studies comparing adaptability to changing conditions in diploids and polyploids are rare. The aim of the study was to determine the importance of environmental conditions of origin as well as target conditions on performance of two Anthericum species, allotetraploid A. liliago and diploid A. ramosum and to explore whether the two species differ in the ability to adapt to these environmental conditions. Specifically, we performed a common garden experiment using soil from 6 localities within the species' natural range, and we simulated the forest and open environments in which they might occur. We compared the performance of diploid A. ramosum and allotetraploid A. liliago originating from different locations in the different soils. The performance of the two species was not affected by simulated shading but differed strongly between the different target soils. Growth of the tetraploids was not affected by the origin of the plants. In contrast, diploids from the most nutrient poor soil performed best in the richest soil, indicating that diploids from deprived environments have an increased ability to acquire nutrients when available. They are thus able to profit from transfer to novel nutrient rich environments. Therefore, the results of the study did not support the general expectation that the polyploids should have a greater ability than the diploids to adapt to a wide range of conditions. In contrast, the results are in line with the observation that diploids occupy a wider range of environments than the allotetraploids in our system.
- MeSH
- diploidie MeSH
- ekosystém MeSH
- fyziologická adaptace * MeSH
- liliovité klasifikace genetika fyziologie MeSH
- polyploidie MeSH
- půda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda MeSH