Most cited article - PubMed ID 24269967
Two step mechanisms of tumor selective delivery of N-(2-hydroxypropyl)methacrylamide copolymer conjugated with pirarubicin via an acid-cleavable linkage
Biodegradable nanomedicines are widely studied as candidates for the effective treatment of various cancerous diseases. Here, we present the design, synthesis and evaluation of biodegradable polymer-based nanomedicines tailored for tumor-associated stimuli-sensitive drug release and polymer system degradation. Diblock polymer systems were developed, which enabled the release of the carrier drug, pirarubicin, via a pH-sensitive spacer allowing for the restoration of the drug cytotoxicity solely in the tumor tissue. Moreover, the tailored design enables the matrix-metalloproteinases- or reduction-driven degradation of the polymer system into the polymer chains excretable from the body by glomerular filtration. Diblock nanomedicines take advantage of an enhanced EPR effect during the initial phase of nanomedicine pharmacokinetics and should be easily removed from the body after tumor microenvironment-associated biodegradation after fulfilling their role as a drug carrier. In parallel with the similar release profiles of diblock nanomedicine to linear polymer conjugates, these diblock polymer conjugates showed a comparable in vitro cytotoxicity, intracellular uptake, and intratumor penetration properties. More importantly, the diblock nanomedicines showed a remarkable in vivo anti-tumor efficacy, which was far more superior than conventional linear polymer conjugates. These findings suggested the advanced potential of diblock polymer conjugates for anticancer polymer therapeutics.
- Keywords
- HPMA conjugate, anticancer, diblock conjugate, drug delivery, pirarubicin,
- Publication type
- Journal Article MeSH
Recently, numerous polymer materials have been employed as drug carrier systems in medicinal research, and their detailed properties have been thoroughly evaluated. Water-soluble polymer carriers play a significant role between these studied polymer systems as they are advantageously applied as carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, antimicrobial molecules, or multidrug resistance inhibitors. Covalent attachment of carried molecules using a biodegradable spacer is strongly preferred, as such design ensures the controlled release of the drug in the place of a desired pharmacological effect in a reasonable time-dependent manner. Importantly, the synthetic polymer biomaterials based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are recognized drug carriers with unique properties that nominate them among the most serious nanomedicines candidates for human clinical trials. This review focuses on advances in the development of HPMA copolymer-based nanomedicines within the passive and active targeting into the place of desired pharmacological effect, tumors, inflammation or bacterial infection sites. Specifically, this review highlights the safety issues of HPMA polymer-based drug carriers concerning the structure of nanomedicines. The main impact consists of the improvement of targeting ability, especially concerning the enhanced and permeability retention (EPR) effect.
- Keywords
- EPR effect, HPMA copolymers, controlled release, drug delivery, nanomedicines,
- Publication type
- Journal Article MeSH
- Review MeSH
Nanomedicines are a novel class of therapeutics that benefit from the nano dimensions of the drug carrier. These nanosystems are highly advantageous mainly within cancer treatment due to their enhanced tumor accumulation. Monolayer tumor cells frequently used in routine preclinical assessment of nanotherapeutics do not have a spatial structural architecture that allows the investigation of the penetration of nanomedicines to predict their behavior in real tumor tissue. Therefore, tumor spheroids from colon carcinoma C26 cells and glioblastoma U87-MG cells were used as 3D in vitro models to analyze the effect of the inner structure, hydrodynamic size, dispersity, and biodegradability of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-based nanomedicines carrying anticancer drug pirarubicin (THP) on the penetration within spheroids. While almost identical penetration through spheroids of linear and star-like copolymers and also their conjugates with THP was observed, THP penetration after nanomedicines application was considerably deeper than for the free THP, thus proving the benefit of polymer carriers. The cytotoxicity of THP-polymer nanomedicines against tumor cell spheroids was almost identical as for the free THP, whereas the 2D cell cytotoxicity of these nanomedicines is usually lower. The nanomedicines thus proved the enhanced efficacy within the more realistic 3D tumor cell spheroid system.
- Keywords
- HPMA polymers, cytotoxicity, penetration, pirarubicin, tumor spheroids,
- Publication type
- Journal Article MeSH
Patients with inadequate anti-cancer T cell responses experience limited benefit from immune checkpoint inhibitors and other immunotherapies that require T cells. Therefore, treatments that induce de novo anti-cancer T cell immunity are needed. One strategy - referred to as in situ vaccination - is to deliver chemotherapeutic or immunostimulatory drugs into tumors to promote cancer cell death and provide a stimulatory environment for priming T cells against antigens already present in the tumor. However, achieving sufficient drug concentrations in tumors without causing dose-limiting toxicities remains a major challenge. To address this challenge, nanomedicines based on nano-sized carriers ('nanocarriers') of chemotherapeutics and immunostimulants are being developed to improve drug accumulation in tumors following systemic (intravenous) administration. Herein, we present the rationale for using systemically administrable nanomedicines to induce anti-cancer T cell immunity via in situ vaccination and provide an overview of synthetic nanomedicines currently used clinically. We also describe general strategies for improving nanomedicine design to increase tumor uptake, including use of micelle- and star polymer-based nanocarriers. We conclude with perspectives for how nanomedicine properties, host factors and treatment combinations can be leveraged to maximize efficacy.
- Keywords
- Chemotherapeutic and immunostimulant, Immunogenic cell death, Nanomedicine and biomaterials, Nanoparticle and microparticle, Pattern recognition receptor,
- MeSH
- Adjuvants, Immunologic administration & dosage MeSH
- Immunotherapy methods MeSH
- Humans MeSH
- Neoplasms drug therapy immunology therapy MeSH
- Nanomedicine methods MeSH
- Cancer Vaccines administration & dosage immunology MeSH
- T-Lymphocytes drug effects immunology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Adjuvants, Immunologic MeSH
- Cancer Vaccines MeSH
One obstacle to the successful delivery of nanodrugs into solid tumors is the heterogeneity of an enhanced permeability and retention (EPR) effect as a result of occluded or embolized tumor blood vessels. Therefore, the augmentation of the EPR effect is critical for satisfactory anticancer nanomedicine. In this study, we focused on one vascular mediator involved in the EPR effect, carbon monoxide (CO), and utilized two CO generating agents, one is an extrinsic CO donor (SMA/CORM2 micelle) and another is an inducer of endogenous CO generation via heme oxygenase-1 (HO-1) induction that is carried out using pegylated hemin. Both agents generated CO selectively in solid tumors, which resulted in an enhanced EPR effect and a two- to three-folds increased tumor accumulation of nanodrugs. An increase in drug accumulation in the normal tissue did not occur with the treatment of CO generators. In vivo imaging also clearly indicated a more intensified fluorescence of macromolecular nanoprobe in solid tumors when combined with these CO generators. Consequently, the combination of CO generators with anticancer nanodrugs resulted in an increased anticancer effect in the different transplanted solid tumor models. These findings strongly warrant the potential application of these CO generators as EPR enhancers in order to enhance tumor detection and therapy using nanodrugs.
- Keywords
- EPR effect, PDT, carbon monoxide, nanomedicine, nanoprobe,
- Publication type
- Journal Article MeSH
Nanomedicine allows achievement of tumor-selective drug delivery because of the enhanced permeability and retention (EPR) effect of solid tumors. We report here the first clinical application of a new agent-HPMA copolymer-conjugated pirarubicin (P-THP)-with a molecular size of about 8 nm, or 38.5 kDa. A patient had advanced prostate cancer with multiple metastases in the lung, pelvis, femur, and perhaps the sacrum. In April 2013, this 60-year-old patient started treatment with leuprorelin and estradiol, which continued until July 2014, but the patient became refractory to this treatment. So the patient underwent proton beam radiotherapy targeted to the primary prostate cancer, and P-THP was administered for numerous metastatic tumor nodules concomitantly with radiotherapy. This combination therapy had remarkable results, with complete remission of multiple metastases in the lung and bone. The prostate-specific antigen (PSA) value was decreased from about 1000 ng/mL on April 30, 2013, to about 100 ng/mL on June 24, 2013, with hormone therapy, but rose again to 964.2 ng/mL and then to 1472 ng/mL in July 2013, during leuprorelin administration. P-THP treatment administered concomitantly with proton beam irradiation was started in August 2013. The PSA value was decreased to 102 ng/mL on August 26, 2013, and then to 0.971 ng/mL on October 8, 2013, and 0.277 ng/mL on January 15, 2015. The P-THP doses ranged from 30 to 75 mg of free THP equivalent/patient every 2-3 weeks without signs of serious toxicity, such as cardiovascular side effects or a reduction in quality of life. No evidence of relapse was found more than 20 months after P-THP administration. This case demonstrates the value of hydrazone-bonded polymeric drugs in multimodal therapy.
- MeSH
- Doxorubicin analogs & derivatives therapeutic use MeSH
- Combined Modality Therapy MeSH
- Drug Delivery Systems * MeSH
- Middle Aged MeSH
- Humans MeSH
- Methacrylates chemistry MeSH
- Bone Neoplasms secondary therapy MeSH
- Lung Neoplasms secondary therapy MeSH
- Prostatic Neoplasms pathology therapy MeSH
- Prognosis MeSH
- Antineoplastic Agents therapeutic use MeSH
- Neoplasm Staging MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Doxorubicin MeSH
- hydroxypropyl methacrylate MeSH Browser
- Methacrylates MeSH
- pirarubicin MeSH Browser
- Antineoplastic Agents MeSH
AIM: To evaluate the potential of tumor-targeted nanoprobe, N-(2-hydroxypropyl)methacrylamide copolymer-conjugated zinc protoporphyrin (PZP) for photodynamic therapy (PDT) and tumor imaging. MATERIALS & METHODS: Different tumor models including carcinogen-induced cancer were used, PZP was intravenously injected followed by irradiation with xenon or blue fluorescent light on tumor. RESULTS: One PZP 20 mg/kg (ZnPP equivalent) dose with two or three treatments of light at an intensity of ≥20 J/cm2 caused necrosis and disappearance of most tumors (>70%) in different tumor models. We also confirmed PZP-based tumor imaging in carcinogen-induced breast tumor and colon cancer models. CONCLUSION: These findings support the potential application of PZP as a tumor-selective nanoprobe for PDT as well as tumor imaging, by virtue of the enhanced permeability and retention effect.
- Keywords
- fluorescent nanoprobe, photodynamic therapy, theranostic nanomedicine, tumor imaging, zinc protoporphyrin,
- Publication type
- Journal Article MeSH