Most cited article - PubMed ID 24333465
Managing heavy metal toxicity stress in plants: biological and biotechnological tools
A pot experiment was undertaken to investigate the effect of Cd, Pb and Zn multi-contamination on the physiological and metabolic response of carrot (Daucus carota L.) after 98 days of growth under greenhouse conditions. Multi-contamination had a higher negative influence on leaves (the highest Cd and Zn accumulation) compared to the roots, which showed no visible change in terms of anatomy and morphology. The results showed the following: (i) significantly higher accumulation of Cd, Zn, and Pb in the multi-contaminated variant (Multi) compared to the control; (ii) significant metabolic responses-an increase in the malondialdehyde content of the Multi variant compared to the control in the roots (by 20%), as well as in the leaves (by 53%); carotenoid content in roots decreased by 31% in the Multi variant compared with the control; and changes in free amino acids, especially those related to plant stress responses. The determination of hydroxyproline and sarcosine may reflect the higher sensitivity of carrot leaves to multi-contamination in comparison to roots. A similar trend was observed for the content of free methionine (significant increase of 31% only in leaves); (iii) physiological responses (significant decreases in biomass, changes in gas-exchange parameters and chlorophyll a); and (iv) significant changes in enzymatic activities (chitinase, alanine aminopeptidase, acid phosphatase) in the root zone.
- Keywords
- cadmium, free amino acids, lead, malondialdehyde, photosynthesis, root vegetable, soil enzymes, zinc,
- MeSH
- Chlorophyll A metabolism MeSH
- Cadmium * metabolism MeSH
- Daucus carota * metabolism MeSH
- Lead metabolism MeSH
- Soil MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll A MeSH
- Cadmium * MeSH
- Lead MeSH
- Soil MeSH
Varied environmental compartments including soils are being contaminated by a myriad toxic metal(loid)s (hereafter termed as "metal/s") mainly through anthropogenic activities. These metals may contaminate food chain and bring irreparable consequences in human. Plant-based approach (phytoremediation) stands second to none among bioremediation technologies meant for sustainable cleanup of soils/sites with metal-contamination. In turn, the capacity of plants to tolerate potential consequences caused by the extracted/accumulated metals decides the effectiveness and success of phytoremediation system. Chelation is among the potential mechanisms that largely govern metal-tolerance in plant cells by maintaining low concentrations of free metals in cytoplasm. Metal-chelation can be performed by compounds of both thiol origin (such as GSH, glutathione; PCs, phytochelatins; MTs, metallothioneins) and non-thiol origin (such as histidine, nicotianamine, organic acids). This paper presents an appraisal of recent reports on both thiol and non-thiol compounds in an effort to shed light on the significance of these compounds in plant-metal tolerance, as well as to provide scientific clues for the advancement of metal-phytoextraction strategies.
- Keywords
- chelation, glutathione, metal/metalloids, metallothioneins, organic acid, phytochelatins, plant tolerance, thiol compounds,
- Publication type
- Journal Article MeSH
- Review MeSH