Nejvíce citovaný článek - PubMed ID 11997381
Salt stress poses a significant challenge to global agriculture, adversely affecting crop yield and food production. The current study investigates the potential of Zinc Oxide (ZnO) nanoparticles (NPs) in mitigating salt stress in common beans. Salt-stressed bean plants were treated with varying concentrations of NPs (25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L) using three different application methods: foliar application, nano priming, and soil application. Results indicated a pronounced impact of salinity stress on bean plants, evidenced by a reduction in fresh weight (24%), relative water content (27%), plant height (33%), chlorophyll content (37%), increased proline (over 100%), sodium accumulation, and antioxidant enzyme activity. Application of ZnO NPs reduced salt stress by promoting physiological growth parameters. The NPs facilitated enhanced plant growth and reduced reactive oxygen species (ROS) generation by regulating plant nutrient homeostasis and chlorophyll fluorescence activity. All the tested application methods effectively mitigate salt stress, with nano-priming emerging as the most effective approach, yielding results comparable to control plants for the tested parameters. This study provides the first evidence that ZnO NPs can effectively mitigate salt stress in bean plants, highlighting their potential to address salinity-induced growth inhibition in crops.
- Klíčová slova
- ZnO nanoparticles, beans, foliar spray, nano priming, salinity stress, soil application,
- Publikační typ
- časopisecké články MeSH
Improper use of nicosulfuron (NSF) may induce harmful effects on plants during weed control. Melatonin (MT) regulates photosynthetic and physiological processes in plants. This study aimed to explore the effects of MT on alleviating NSF toxicity by measuring the growth parameters, photosynthetic capacity, and antioxidative responses in sweet corn seedlings. Compared to NSF alone, exogenous MT increased chlorophyll content, transpiration rate, net photosynthetic rate, stomatal conductance, and maximum efficiency of PSII photochemistry, while reduced malondialdehyde, hydrogen peroxide, superoxide anion radical, and proline contents. Moreover, MT also increased the activity of ascorbate peroxidase and the expression levels of ZmAPX1, ZmAPX2, ZmALS1, and ZmCYP81A9. The inhibition of p-chlorophenylalanine inhibited the positive effects of MT on photosynthetic and physiological indexes. The results indicated that pretreatment with MT might effectively mitigate NSF toxicity in sweet corn seedlings.
- Klíčová slova
- antioxidative system, herbicide stress, melatonin, photosystem, sweet corn seedlings,
- Publikační typ
- časopisecké články MeSH
Salinity is the primary environmental stress that adversely affects plants' growth and productivity in many areas of the world. Published research validated the role of aspartic acid in improving plant tolerance against salinity stress. Therefore, in the present work, factorial pot trials in a completely randomized design were conducted to examine the potential role of exogenous application of aspartic acid (Asp) in increasing the tolerance of wheat (Triticum aestivum L.) plants against salt stress. Wheat plants were sown with different levels of salinity (0, 30, or 60 mM NaCl) and treated with three levels of exogenous application of foliar spray of aspartic acid (Asp) (0, 0.4, 0.6, or 0.8 mM). Results of the study indicated that salinity stress decreased growth attributes like shoot length, leaf area, and shoot biomass along with photosynthesis pigments and endogenous indole acetic acid. NaCl stress reduced the total content of carbohydrates, flavonoid, beta carotene, lycopene, and free radical scavenging activity (DPPH%). However, Asp application enhanced photosynthetic pigments and endogenous indole acetic acid, consequently improving plant leaf area, leading to higher biomass dry weight either under salt-stressed or non-stressed plants. Exogenous application of Asp, up-regulate the antioxidant system viz. antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and nitrate reductase), and non-enzymatic antioxidants (ascorbate, glutathione, total phenolic content, total flavonoid content, beta carotene, lycopene) contents resulted in declined in reactive oxygen species (ROS). The decreased ROS in Asp-treated plants resulted in reduced hydrogen peroxide, lipid peroxidation (MDA), and aldehyde under salt or non-salt stress conditions. Furthermore, Asp foliar application increased compatible solute accumulation (amino acids, proline, total soluble sugar, and total carbohydrates) and increased radical scavenging activity of DPPH and enzymatic ABTS. Results revealed that the quadratic regression model explained 100% of the shoot dry weight (SDW) yield variation. With an increase in Asp application level by 1.0 mM, the SDW was projected to upsurge through 956 mg/plant. In the quadratic curve model, if Asp is applied at a level of 0.95 mM, the SDW is probably 2.13 g plant-1. This study concluded that the exogenous application of aspartic acid mitigated the adverse effect of salt stress damage on wheat plants and provided economic benefits.
- Klíčová slova
- Antioxidant enzymes, Triticum aestivum, aspartic acid, hydrogen peroxide, lipid peroxidation, osmoprotectants, salinity stress,
- Publikační typ
- časopisecké články MeSH
The family Fabaceae traditionally serves as a food and herbal remedies source. Certain plants serve for treatment of menopausal symptoms based on a presence of typical secondary metabolites, isoflavones. Beside soybean and clovers, other plants or cultures in vitro can produce these molecules. A cultivation in vitro can be enhanced by elicitation that stimulates metabolites biosynthesis via stress reaction. Vanadium compounds have been already described as potential elicitors, and the aim of this study was to determine the impact of NH₄VO₃ and VOSO₄ solutions on isoflavones production in Genista tinctoria L. cell cultures. The significant increase of isoflavones content, such as genistin, genistein, or formononetin, was measured in a nutrient medium or dry mass after NH₄VO₃ treatment for 24 or 48 h. The possible transport mechanism of isoflavones release as a result of elicitation was further evaluated. An incubation with different transport inhibitors prior to elicitation took effect on isoflavones content in the medium. However, there was a non-ended result for particular metabolites such as genistein and daidzein, where ATP-binding cassette (ABC) or, alternatively, multidrug and toxin extrusion (MATE) proteins can participate. Possible elicitation by some inhibitors was discussed as a result of their pleiotropic effect. Despite this outcome, the determination of the transport mechanism is an important step for identification of the specific transporter.
- Klíčová slova
- Dyer’s Greenweed, elicitation, heavy metals, plasma membrane transport,
- MeSH
- buněčné kultury metody MeSH
- Genista chemie cytologie účinky léků MeSH
- isoflavony chemie MeSH
- sekundární metabolismus účinky léků MeSH
- sloučeniny vanadu farmakologie MeSH
- vanadáty farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ammonium metavanadate MeSH Prohlížeč
- isoflavony MeSH
- sloučeniny vanadu MeSH
- vanadáty MeSH
- vanadyl sulfate MeSH Prohlížeč
Varied environmental compartments including soils are being contaminated by a myriad toxic metal(loid)s (hereafter termed as "metal/s") mainly through anthropogenic activities. These metals may contaminate food chain and bring irreparable consequences in human. Plant-based approach (phytoremediation) stands second to none among bioremediation technologies meant for sustainable cleanup of soils/sites with metal-contamination. In turn, the capacity of plants to tolerate potential consequences caused by the extracted/accumulated metals decides the effectiveness and success of phytoremediation system. Chelation is among the potential mechanisms that largely govern metal-tolerance in plant cells by maintaining low concentrations of free metals in cytoplasm. Metal-chelation can be performed by compounds of both thiol origin (such as GSH, glutathione; PCs, phytochelatins; MTs, metallothioneins) and non-thiol origin (such as histidine, nicotianamine, organic acids). This paper presents an appraisal of recent reports on both thiol and non-thiol compounds in an effort to shed light on the significance of these compounds in plant-metal tolerance, as well as to provide scientific clues for the advancement of metal-phytoextraction strategies.
- Klíčová slova
- chelation, glutathione, metal/metalloids, metallothioneins, organic acid, phytochelatins, plant tolerance, thiol compounds,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The basidiomycetous yeast Cryptococcus humicola was shown to be tolerant to manganese, cobalt, nickel, zinc, lanthanum, and cadmium cations at a concentration of 2.5 mmol/L, which is toxic for many yeasts. The basidiomycetous yeast Cryptococcus terreus was sensitive to all these ions and did not grow at the above concentration. In the presence of heavy metal cations, С. humicola, as opposed to C. terreus, was characterized by the higher content of acid-soluble inorganic polyphosphates. In vivo 4',6'-diamino-2-phenylindole dihydrochloride staining revealed polyphosphate accumulation in the cell wall and cytoplasmic inclusions of С. humicola in the presence of heavy metals. In C. terreus, polyphosphates in the presence of heavy metals accumulate mainly in vacuoles, which results in morphological changes in these organelles and, probably, disturbance of their function. The role of polyphosphate accumulation and cellular localization as factors of heavy metal tolerance of Cryptococcus humicola is discussed.
- MeSH
- antifungální látky metabolismus toxicita MeSH
- buněčná stěna chemie MeSH
- Cryptococcus účinky léků růst a vývoj metabolismus MeSH
- cytoplazma chemie MeSH
- organely chemie MeSH
- polyfosfáty metabolismus MeSH
- těžké kovy metabolismus toxicita MeSH
- tolerance léku * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antifungální látky MeSH
- polyfosfáty MeSH
- těžké kovy MeSH