Nejvíce citovaný článek - PubMed ID 24341995
European springtime temperature synchronises ibex horn growth across the eastern Swiss Alps
In many species, decreasing body size has been associated with increasing temperatures. Although climate-induced phenotypic shifts, and evolutionary impacts, can affect the structure and functioning of marine and terrestrial ecosystems through biological and metabolic rules, evidence for shrinking body size is often challenged by (i) relatively short intervals of observation, (ii) a limited number of individuals, and (iii) confinement to small and isolated populations. To overcome these issues and provide important multi-species, long-term information for conservation managers and scientists, we compiled and analysed 222 961 measurements of eviscerated body weight, 170 729 measurements of hind foot length and 145 980 measurements of lower jaw length, in the four most abundant Alpine ungulate species: ibex (Capra ibex), chamois (Rupicapra rupicapra), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Regardless of age, sex and phylogeny, the body mass and size of these sympatric animals, from the eastern Swiss Alps, remained stable between 1991 and 2013. Neither global warming nor local hunting influenced the fitness of the wild ungulates studied at a detectable level. However, we cannot rule out possible counteracting effects of enhanced nutritional resources associated with longer and warmer growing seasons, as well as the animals' ability to migrate along extensive elevational gradients in the highly diversified alpine landscape of this study.
- Klíčová slova
- Alpine ungulates, Bergmann's rule, biometric monitoring, climate change, metabolic rate, organism shrinking,
- Publikační typ
- časopisecké články MeSH
The sudden interruption of recurring larch budmoth (LBM; Zeiraphera diniana or griseana Gn.) outbreaks across the European Alps after 1982 was surprising, because populations had regularly oscillated every 8-9 years for the past 1200 years or more. Although ecophysiological evidence was limited and underlying processes remained uncertain, climate change has been indicated as a possible driver of this disruption. An unexpected, recent return of LBM population peaks in 2017 and 2018 provides insight into this insect's climate sensitivity. Here, we combine meteorological and dendrochronological data to explore the influence of temperature variation and atmospheric circulation on cyclic LBM outbreaks since the early 1950s. Anomalous cold European winters, associated with a persistent negative phase of the North Atlantic Oscillation, coincide with four consecutive epidemics between 1953 and 1982, and any of three warming-induced mechanisms could explain the system's failure thereafter: (1) high egg mortality, (2) asynchrony between egg hatch and foliage growth, and (3) upward shifts of outbreak epicentres. In demonstrating that LBM populations continued to oscillate every 8-9 years at sub-outbreak levels, this study emphasizes the relevance of winter temperatures on trophic interactions between insects and their host trees, as well as the importance of separating natural from anthropogenic climate forcing on population behaviour.
- Klíčová slova
- Dendroecology, European Alps, Insect outbreaks, North Atlantic Oscillation, Population cycles, Zeiraphera diniana or griseana,
- MeSH
- epidemický výskyt choroby MeSH
- klimatické změny MeSH
- modřín * MeSH
- můry * MeSH
- populační dynamika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Changes in land-use and climate affect the distribution and diversity of plant and animal species at different spatiotemporal scales. The extent to which species-specific phenotypic plasticity and biotic interactions mediate organismal adaptation to changing environments, however, remains poorly understood. Woody plant expansion is threatening the extent of alpine grasslands worldwide, and evaluating and predicting its effects on herbivores is of crucial importance. Here, we explore the impact of shrubification on the feeding efficiency of Pyrenean chamois (Rupicapra p. pyrenaica), as well as on the three most abundant coexisting domestic ungulate species: cattle, sheep and horses. We use observational diet composition from May to October and model different scenarios of vegetation availability where shrubland and woodland proliferate at the expense of grassland. We then predicted if the four ungulate species could efficiently utilize their food landscapes with their current dietary specificities measuring their niche breath in each scenario. We observed that the wild counterpart, due to a higher trophic plasticity, is less disturbed by shrubification compared to livestock, which rely primarily on herbaceous plants and will be affected 3.6 times more. Our results suggest that mixed feeders, such as chamois, could benefit from fallow landscapes, and that mountain farmers are at a growing economic risk worldwide due to changing land-use practices and climate conditions.
- Klíčová slova
- Pyrenean chamois, diet preference, free-ranging livestock, habitat change, herbivory, mountain ecosystems, shrubification,
- MeSH
- býložravci fyziologie MeSH
- divoká zvířata MeSH
- dobytek fyziologie MeSH
- druhová specificita MeSH
- ekosystém MeSH
- klimatické změny MeSH
- preference v jídle MeSH
- rostliny klasifikace MeSH
- Rupicapra fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Changes in the ecology of macrofungi are poorly understood, not only because much of their life cycle is hidden belowground, but also because experiments often miss real-world complexity and most fruitbody inventories are limited in space and time. The National Poisons Information Centre 'Tox Info Suisse' provides countrywide 24hours/7days medical advice in case of poisonings since 1966. Here, we introduce a total of 12,126 mushroom-related phone calls that were received by Tox Info Suisse between 1966 and 2014. This indirect source of mycological information is dominated by the families of Boletaceae (11%), Agaricaceae (10%) and Amanitaceae (8%), which account for ~30% of all cases. Mushroom fruiting patterns revealed by the Poisons Centre inventory statistically resemble changes in fungal phenology, productivity and diversity as reflected by the Swiss National Data Centre 'SwissFungi'. Although the newly developed Tox Info Suisse dataset provides an innovative basis for timely environmental research, caution is advised when interpreting some of the observed long-term changes and autumnal extremes. Uncertainty of the new record relates to possible data incompleteness, imprecise species description and/or identification, as well as the inclusion of cultivated and non-indigenous mushrooms. Nevertheless, we hope that the Tox Info Suisse inventory will stimulate and enable a variety of ecological-oriented follow-up studies.
- MeSH
- Agaricales * klasifikace MeSH
- druhová specificita MeSH
- informační střediska MeSH
- lidé MeSH
- mykotoxikóza etiologie MeSH
- plodnice hub * klasifikace MeSH
- podnebí MeSH
- roční období MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Švýcarsko epidemiologie MeSH