Most cited article - PubMed ID 24445755
A distinct variant of mixed dysarthria reflects parkinsonism and dystonia due to ephedrone abuse
BACKGROUND AND OBJECTIVE: An aging society requires easy-to-use approaches for diagnosis and monitoring of neurodegenerative disorders, such as Parkinson's disease (PD), so that clinicians can effectively adjust a treatment policy and improve patients' quality of life. Current methods of PD diagnosis and monitoring usually require the patients to come to a hospital, where they undergo several neurological and neuropsychological examinations. These examinations are usually time-consuming, expensive, and performed just a few times per year. Hence, this study explores the possibility of fusing computerized analysis of hypomimia and hypokinetic dysarthria (two motor symptoms manifested in the majority of PD patients) with the goal of proposing a new methodology of PD diagnosis that could be easily integrated into mHealth systems. METHODS: We enrolled 73 PD patients and 46 age- and gender-matched healthy controls, who performed several speech/voice tasks while recorded by a microphone and a camera. Acoustic signals were parametrized in the fields of phonation, articulation and prosody. Video recordings of a face were analyzed in terms of facial landmarks movement. Both modalities were consequently modeled by the XGBoost algorithm. RESULTS: The acoustic analysis enabled diagnosis of PD with 77% balanced accuracy, while in the case of the facial analysis, we observed 81% balanced accuracy. The fusion of both modalities increased the balanced accuracy to 83% (88% sensitivity and 78% specificity). The most informative speech exercise in the multimodality system turned out to be a tongue twister. Additionally, we identified muscle movements that are characteristic of hypomimia. CONCLUSIONS: The introduced methodology, which is based on the myriad of speech exercises likewise audio and video modality, allows for the detection of PD with an accuracy of up to 83%. The speech exercise - tongue twisters occurred to be the most valuable from the clinical point of view. Additionally, the clinical interpretation of the created models is illustrated. The presented computer-supported methodology could serve as an extra tool for neurologists in PD detection and the proposed potential solution of mHealth will facilitate the patient's and doctor's life.
- Keywords
- Acoustic analysis, Facial analysis, Hypokinetic dysarthria, Hypomimia, Machine learning, Parkinson's disease,
- Publication type
- Journal Article MeSH
OBJECTIVE: This multilanguage study used simple speech recording and high-end pattern analysis to provide sensitive and reliable noninvasive biomarkers of prodromal versus manifest α-synucleinopathy in patients with idiopathic rapid eye movement sleep behavior disorder (iRBD) and early-stage Parkinson disease (PD). METHODS: We performed a multicenter study across the Czech, English, German, French, and Italian languages at 7 centers in Europe and North America. A total of 448 participants (337 males), including 150 with iRBD (mean duration of iRBD across language groups 0.5-3.4 years), 149 with PD (mean duration of disease across language groups 1.7-2.5 years), and 149 healthy controls were recorded; 350 of the participants completed the 12-month follow-up. We developed a fully automated acoustic quantitative assessment approach for the 7 distinctive patterns of hypokinetic dysarthria. RESULTS: No differences in language that impacted clinical parkinsonian phenotypes were found. Compared with the controls, we found significant abnormalities of an overall acoustic speech severity measure via composite dysarthria index for both iRBD (p = 0.002) and PD (p < 0.001). However, only PD (p < 0.001) was perceptually distinct in a blinded subjective analysis. We found significant group differences between PD and controls for monopitch (p < 0.001), prolonged pauses (p < 0.001), and imprecise consonants (p = 0.03); only monopitch was able to differentiate iRBD patients from controls (p = 0.004). At the 12-month follow-up, a slight progression of overall acoustic speech impairment was noted for the iRBD (p = 0.04) and PD (p = 0.03) groups. INTERPRETATION: Automated speech analysis might provide a useful additional biomarker of parkinsonism for the assessment of disease progression and therapeutic interventions. ANN NEUROL 2021;90:62-75.
- MeSH
- Biomarkers MeSH
- Middle Aged MeSH
- Humans MeSH
- Parkinson Disease diagnosis physiopathology MeSH
- REM Sleep Behavior Disorder diagnosis physiopathology MeSH
- Prodromal Symptoms MeSH
- Disease Progression MeSH
- Speech physiology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- Biomarkers MeSH
Although motor speech disorders represent an early and prominent clinical feature of multiple system atrophy (MSA), the potential usefulness of speech assessment as a diagnostic tool has not yet been explored. This cross-sectional study aimed to provide a comprehensive, objective description of motor speech function in the parkinsonian (MSA-P) and cerebellar (MSA-C) variants of MSA. Speech samples were acquired from 80 participants including 18 MSA-P, 22 MSA-C, 20 Parkinson's disease (PD), and 20 healthy controls. The accurate differential diagnosis of dysarthria subtypes was based on quantitative acoustic analysis of 14 speech dimensions. A mixed type of dysarthria involving hypokinetic, ataxic and spastic components was found in the majority of MSA patients independent of phenotype. MSA-P showed significantly greater speech impairment than PD, and predominantly exhibited harsh voice, imprecise consonants, articulatory decay, monopitch, excess pitch fluctuation and pitch breaks. MSA-C was dominated by prolonged phonemes, audible inspirations and voice stoppages. Inappropriate silences, irregular motion rates and overall slowness of speech were present in both MSA phenotypes. Speech features allowed discrimination between MSA-P and PD as well as between both MSA phenotypes with an area under curve up to 0.86. Hypokinetic, ataxic and spastic dysarthria components in MSA were correlated to the clinical evaluation of rigidity, cerebellar and bulbar/pseudobulbar manifestations, respectively. Distinctive speech alterations reflect underlying pathophysiology in MSA. Objective speech assessment may provide an inexpensive and widely applicable screening instrument for differentiation of MSA and PD from controls and among subtypes of MSA.
- Keywords
- Acoustic analyses, Atypical parkinsonism, Dysarthria, Multiple system atrophy, Parkinson’s disease, Speech disorder,
- MeSH
- Speech Acoustics MeSH
- Dysarthria diagnosis etiology physiopathology MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Multiple System Atrophy complications physiopathology MeSH
- Cerebellar Diseases complications physiopathology MeSH
- Parkinsonian Disorders complications physiopathology MeSH
- Cross-Sectional Studies MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Pallidal deep-brain stimulation of the internal globus pallidus (GPi-DBS) is an effective treatment for dystonia. However, GPi-DBS may cause important stimulation-induced side effects such as hypokinetic dysarthria, which is particularly manifested by articulation rate abnormalities. However, little data regarding the effect of the location of the electrode and stimulation parameters for pallidal stimulation on articulation rate in dystonia is available. Speech data were acquired from 18 dystonic patients with GPi-DBS and 18 matched healthy controls. Each of dystonic patients was tested twice within 1 day in both the GPi-DBS ON and GPi-DBS OFF stimulation conditions. Compared to healthy controls, the decreased diadochokinetic rate and slower articulation rate in dystonic patients were observed in both stimulation conditions. No significant differences in speech rate measures between stimulation conditions were detected with no relation to contact localization and stimulation intensity. Our findings do not support the use articulation rate as a surrogate marker of stimulation-induced changes to the speech apparatus in dystonia.
- Keywords
- Acoustic analysis, Deep-brain stimulation, Dysarthria, Dystonia, Pallidal, Speech,
- MeSH
- Adult MeSH
- Dysarthria etiology MeSH
- Dystonic Disorders therapy MeSH
- Globus Pallidus * MeSH
- Deep Brain Stimulation adverse effects MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Speech rhythm abnormalities are commonly present in patients with different neurodegenerative disorders. These alterations are hypothesized to be a consequence of disruption to the basal ganglia circuitry involving dysfunction of motor planning, programing, and execution, which can be detected by a syllable repetition paradigm. Therefore, the aim of the present study was to design a robust signal processing technique that allows the automatic detection of spectrally distinctive nuclei of syllable vocalizations and to determine speech features that represent rhythm instability (RI) and rhythm acceleration (RA). A further aim was to elucidate specific patterns of dysrhythmia across various neurodegenerative disorders that share disruption of basal ganglia function. Speech samples based on repetition of the syllable /pa/ at a self-determined steady pace were acquired from 109 subjects, including 22 with Parkinson's disease (PD), 11 progressive supranuclear palsy (PSP), 9 multiple system atrophy (MSA), 24 ephedrone-induced parkinsonism (EP), 20 Huntington's disease (HD), and 23 healthy controls. Subsequently, an algorithm for the automatic detection of syllables as well as features representing RI and RA were designed. The proposed detection algorithm was able to correctly identify syllables and remove erroneous detections due to excessive inspiration and non-speech sounds with a very high accuracy of 99.6%. Instability of vocal pace performance was observed in PSP, MSA, EP, and HD groups. Significantly increased pace acceleration was observed only in the PD group. Although not significant, a tendency for pace acceleration was observed also in the PSP and MSA groups. Our findings underline the crucial role of the basal ganglia in the execution and maintenance of automatic speech motor sequences. We envisage the current approach to become the first step toward the development of acoustic technologies allowing automated assessment of rhythm in dysarthrias.
- Keywords
- Huntington’s disease, Parkinson’s disease, acoustic analyses, atypical parkinsonian syndromes, dysarthria, oral festination, rhythm, speech and voice disorders,
- Publication type
- Journal Article MeSH
Although speech disorder is frequently an early and prominent clinical feature of Parkinson's disease (PD) as well as atypical parkinsonian syndromes (APS) such as progressive supranuclear palsy (PSP) and multiple system atrophy (MSA), there is a lack of objective and quantitative evidence to verify whether any specific speech characteristics allow differentiation between PD, PSP and MSA. Speech samples were acquired from 77 subjects including 15 PD, 12 PSP, 13 MSA and 37 healthy controls. The accurate differential diagnosis of dysarthria subtypes was based on the quantitative acoustic analysis of 16 speech dimensions. Dysarthria was uniformly present in all parkinsonian patients but was more severe in PSP and MSA than in PD. Whilst PD speakers manifested pure hypokinetic dysarthria, ataxic components were more affected in MSA whilst PSP subjects demonstrated severe deficits in hypokinetic and spastic elements of dysarthria. Dysarthria in PSP was dominated by increased dysfluency, decreased slow rate, inappropriate silences, deficits in vowel articulation and harsh voice quality whereas MSA by pitch fluctuations, excess intensity variations, prolonged phonemes, vocal tremor and strained-strangled voice quality. Objective speech measurements were able to discriminate between APS and PD with 95% accuracy and between PSP and MSA with 75% accuracy. Dysarthria severity in APS was related to overall disease severity (r = 0.54, p = 0.006). Dysarthria with various combinations of hypokinetic, spastic and ataxic components reflects differing pathophysiology in PD, PSP and MSA. Thus, motor speech examination may provide useful information in the evaluation of these diseases with similar manifestations.
- MeSH
- Middle Aged MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Multiple System Atrophy complications MeSH
- Parkinson Disease complications MeSH
- Speech Disorders classification diagnosis etiology MeSH
- Supranuclear Palsy, Progressive complications MeSH
- Retrospective Studies MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
PURPOSE: Although dysphonia has been shown to be a common sign of Huntington disease (HD), the extent of phonatory dysfunction in gene positive premanifest HD individuals remains unknown. The aim of the current study was to explore the possible occurrence of phonatory abnormalities in prodromal HD. METHOD: Sustained vowel phonations were acquired from 28 premanifest HD individuals and 28 healthy controls of comparable age. Data were analysed acoustically for measures of several phonatory dimensions including airflow insufficiency, aperiodicity, irregular vibration of vocal folds, signal perturbations, increased noise, vocal tremor and articulation deficiency. A predictive model was built to find the best combination of acoustic features and estimate sensitivity/specificity for differentiation between premanifest HD subjects and controls. The extent of voice deficits according to a specific phonatory dimension was determined using statistical decision making theory. The results were correlated to global motor function, cognitive score, disease burden score and estimated years to disease onset. RESULTS: Measures of aperiodicity and increased noise were able to significantly differentiate between premanifest HD individuals and controls (p<0.01). The combination of these aspects of dysphonia led to a sensitivity of 91.5% and specificity of 79.2% to correctly distinguish speakers with premanifest HD from healthy individuals. Some form of disrupted phonatory function was revealed in 68% of our premanifest HD subjects, where 18% had one affected phonatory dimension and 50% showed impairment of two or more dimensions. A relationship between pitch control and cognitive score was also observed (r = -0.50, p = 0.007). CONCLUSIONS: Phonatory abnormalities are detectable even the in premotor stages of HD. Speech investigation may have the potential to provide functional biomarkers of HD and could be included in future clinical trials and therapeutic interventions.
- MeSH
- Speech Acoustics MeSH
- Adult MeSH
- Dysphonia etiology physiopathology MeSH
- Voice physiology MeSH
- Huntington Disease complications physiopathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Case-Control Studies MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Patients with ephedrone parkinsonism (EP) show a complex, rapidly progressive, irreversible, and levodopa non-responsive parkinsonian and dystonic syndrome due to manganese intoxication. Eye movements may help to differentiate parkinsonian syndromes providing insights into which brain networks are affected in the underlying disease, but they have never been systematically studied in EP. Horizontal and vertical eye movements were recorded in 28 EP and compared to 21 Parkinson's disease (PD) patients, and 27 age- and gender-matched healthy subjects using standardized oculomotor tasks with infrared videooculography. EP patients showed slow and hypometric horizontal saccades, an increased occurrence of square wave jerks, long latencies of vertical antisaccades, a high error rate in the horizontal antisaccade task, and made more errors than controls when pro- and antisaccades were mixed. Based on oculomotor performance, a direct differentiation between EP and PD was possible only by the velocity of horizontal saccades. All remaining metrics were similar between both patient groups. EP patients present extensive oculomotor disturbances probably due to manganese-induced damage to the basal ganglia, reflecting their role in oculomotor system.
- MeSH
- Basal Ganglia physiopathology MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Manganese toxicity MeSH
- Brain physiopathology MeSH
- Parkinsonian Disorders chemically induced physiopathology MeSH
- Eye Movements physiology MeSH
- Substance-Related Disorders physiopathology MeSH
- Propiophenones adverse effects MeSH
- Saccades physiology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Manganese MeSH
- monomethylpropion MeSH Browser
- Propiophenones MeSH