Nejvíce citovaný článek - PubMed ID 24518929
AIMS: The 2021 European Society of Cardiology prevention guidelines recommend the use of (lifetime) risk prediction models to aid decisions regarding initiation of prevention. We aimed to update and systematically recalibrate the LIFEtime-perspective CardioVascular Disease (LIFE-CVD) model to four European risk regions for the estimation of lifetime CVD risk for apparently healthy individuals. METHODS AND RESULTS: The updated LIFE-CVD (i.e. LIFE-CVD2) models were derived using individual participant data from 44 cohorts in 13 countries (687 135 individuals without established CVD, 30 939 CVD events in median 10.7 years of follow-up). LIFE-CVD2 uses sex-specific functions to estimate the lifetime risk of fatal and non-fatal CVD events with adjustment for the competing risk of non-CVD death and is systematically recalibrated to four distinct European risk regions. The updated models showed good discrimination in external validation among 1 657 707 individuals (61 311 CVD events) from eight additional European cohorts in seven countries, with a pooled C-index of 0.795 (95% confidence interval 0.767-0.822). Predicted and observed CVD event risks were well calibrated in population-wide electronic health records data in the UK (Clinical Practice Research Datalink) and the Netherlands (Extramural LUMC Academic Network). When using LIFE-CVD2 to estimate potential gain in CVD-free life expectancy from preventive therapy, projections varied by risk region reflecting important regional differences in absolute lifetime risk. For example, a 50-year-old smoking woman with a systolic blood pressure (SBP) of 140 mmHg was estimated to gain 0.9 years in the low-risk region vs. 1.6 years in the very high-risk region from lifelong 10 mmHg SBP reduction. The benefit of smoking cessation for this individual ranged from 3.6 years in the low-risk region to 4.8 years in the very high-risk region. CONCLUSION: By taking into account geographical differences in CVD incidence using contemporary representative data sources, the recalibrated LIFE-CVD2 model provides a more accurate tool for the prediction of lifetime risk and CVD-free life expectancy for individuals without previous CVD, facilitating shared decision-making for cardiovascular prevention as recommended by 2021 European guidelines.
The study introduces LIFE-CVD2, a new tool that helps predict the risk of heart disease over a person’s lifetime, and highlights how where you live in Europe can affect this risk.Using health information from over 687 000 people, LIFE-CVD2 looks at things like blood pressure and whether someone smokes to figure out their chance of having heart problems later in life. Health information from another 1.6 million people in seven different European countries was used to show that it did a good job of predicting who might develop heart disease.Knowing your heart disease risk over your whole life helps doctors give you the best advice to keep your heart healthy. Let us say there is a 50-year-old woman who smokes and has a bit high blood pressure. Right now, she might not look like she is in danger. But with the LIFE-CVD2 tool, doctors can show her how making changes today, like lowering her blood pressure or stopping smoking, could mean many more years without heart problems. These healthy changes can make a big difference over many years.
- Klíčová slova
- Cardiovascular disease, Lifetime, Prevention, Primary prevention, Risk prediction,
- MeSH
- časové faktory MeSH
- dospělí MeSH
- hodnocení rizik MeSH
- kardiovaskulární nemoci * prevence a kontrola epidemiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- metody pro podporu rozhodování MeSH
- prognóza MeSH
- rizikové faktory kardiovaskulárních chorob * MeSH
- rizikové faktory MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
Identification of genomic variability in population plays an important role in the clinical diagnostics of human genetic diseases. Thanks to rapid technological development in the field of massive parallel sequencing technologies, also known as next-generation sequencing (NGS), complex genomic analyses are now easier and cheaper than ever before, which consequently leads to more effective utilization of these techniques in clinical practice. However, interpretation of data from NGS is still challenging due to several issues caused by natural variability of DNA sequences in human populations. Therefore, development and realization of projects focused on description of genetic variability of local population (often called "national or digital genome") with a NGS technique is one of the best approaches to address this problem. The next step of the process is to share such data via publicly available databases. Such databases are important for the interpretation of variants with unknown significance or (likely) pathogenic variants in rare diseases or cancer or generally for identification of pathological variants in a patient's genome. In this paper, we have compiled an overview of published results of local genome sequencing projects from United Kingdom and Europe together with future plans and perspectives for newly announced ones.
- Klíčová slova
- United Kingdom, genetic variability Europe, national genome project, population, whole-genome sequencing,
- MeSH
- genomika metody MeSH
- lidé MeSH
- nádory * genetika MeSH
- sekvenování celého genomu MeSH
- vysoce účinné nukleotidové sekvenování * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Geografické názvy
- Spojené království MeSH
The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits.
- Publikační typ
- časopisecké články MeSH
Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.
- MeSH
- bipolární porucha genetika MeSH
- celogenomová asociační studie * MeSH
- fenotyp MeSH
- genetická predispozice k nemoci MeSH
- genom lidský MeSH
- hlavní histokompatibilní komplex genetika MeSH
- lidé MeSH
- lidské chromozomy genetika MeSH
- lokus kvantitativního znaku genetika MeSH
- multifaktoriální dědičnost genetika MeSH
- rizikové faktory MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- Research Support, N.I.H., Extramural MeSH
AIMS: Cardiovascular disease (CVD) risk prediction models are used in Western European countries, but less so in Eastern European countries where rates of CVD can be two to four times higher. We recalibrated the SCORE prediction model for three Eastern European countries and evaluated the impact of adding seven behavioural and psychosocial risk factors to the model. METHODS AND RESULTS: We developed and validated models using data from the prospective HAPIEE cohort study with 14 598 participants from Russia, Poland, and the Czech Republic (derivation cohort, median follow-up 7.2 years, 338 fatal CVD cases) and Estonian Biobank data with 4632 participants (validation cohort, median follow-up 8.3 years, 91 fatal CVD cases). The first model (recalibrated SCORE) used the same risk factors as in the SCORE model. The second model (HAPIEE SCORE) added education, employment, marital status, depression, body mass index, physical inactivity, and antihypertensive use. Discrimination of the original SCORE model (C-statistic 0.78 in the derivation and 0.83 in the validation cohorts) was improved in recalibrated SCORE (0.82 and 0.85) and HAPIEE SCORE (0.84 and 0.87) models. After dichotomizing risk at the clinically meaningful threshold of 5%, and when comparing the final HAPIEE SCORE model against the original SCORE model, the net reclassification improvement was 0.07 [95% confidence interval (CI) 0.02-0.11] in the derivation cohort and 0.14 (95% CI 0.04-0.25) in the validation cohort. CONCLUSION: Our recalibrated SCORE may be more appropriate than the conventional SCORE for some Eastern European populations. The addition of seven quick, non-invasive, and cheap predictors further improved prediction accuracy.
- Klíčová slova
- Cardiovascular diseases, Eastern Europe, Psychosocial deprivation, Risk prediction, Sensitivity and specificity, Socioeconomic factors,
- MeSH
- hodnocení rizik MeSH
- kardiovaskulární nemoci * epidemiologie MeSH
- kohortové studie MeSH
- lidé MeSH
- prospektivní studie MeSH
- rizikové faktory kardiovaskulárních chorob MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Česká republika MeSH
- Polsko MeSH
- Rusko MeSH
It is widely accepted that the Five Factor Model (FFM) is a satisfactory description of the pattern of covariations among personality traits, which supposedly fits, more or less adequately, every individual. As an amendment to the FFM, we propose that the customary five-factor structure is only a near-universal, because it does not fit all individuals but only a large majority of them. Evidences reveal a small minority of participants who have an unusual configuration of personality traits, which is clearly recognizable, both in self- and observer-ratings. We identified three types of atypical configurations of personality traits, characterized mainly by a scatter of subscale scores within each of the FFM factors. How different configurations of personality traits are formed, persist, and function needs further investigation.
- Klíčová slova
- NEO PI-R/3, five-factor model, personality mutants, personality traits, trait configurations,
- Publikační typ
- časopisecké články MeSH
It is argued that if we compute self-other agreement on some personality traits then we possess no or very little information about the individuals who are the targets of this judgment. This idea is largely based on two separate ways of computing self-other agreement: trait agreement (rT ) and profile agreement (rP ), which are typically associated with two different trait-centered and person-centered approaches in personality research. Personality traits of 4115 targets from Czech, Belgian, Estonian, and German samples were rated by themselves and knowledgeable informants. We demonstrate that trait agreement can be partialled into individual contributions so that it is possible to show how much each individual pair of judges contributes to agreement on a particular trait. Similarly, it is possible to decompose agreement between two personality profiles into the individual contributions of traits from which these profiles are assembled. If normativeness is separated from distinctiveness of personality scores and individual profiles are ipsatized, then mean profile agreement rP becomes identical to mean trait agreement r T . The views that trait-by-trait analysis does not provide information regarding accuracy level of a particular pair of judges and profile analysis does not permit assessment of the relative contributions of traits to overall accuracy are not supported.
- Klíčová slova
- Asendorpf's index, Rank Consistency Index, self-other agreement, trait-centered approach, variable-centered approach,
- Publikační typ
- časopisecké články MeSH