Most cited article - PubMed ID 24531869
Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola
Yeasts Cryptococcus humicola accumulated cadmium, cobalt, and iron (~ 50, 17, and 4% of the content in the medium, respectively) from the medium containing glucose, phosphate, and 2 mmol/L of metal salts. The effects of metal absorption on the levels of orthophosphate (Pi) and inorganic polyphosphate (polyP) varied for the metals under study. The levels of Pi and polyP increased in the case of cadmium and cobalt, respectively. In the case of iron, no changes in the levels of Pi and polyP were observed. Multiple DAPI-stained polyP inclusions were observed in the cytoplasm of cadmium-containing cells. The intensity of DAPI staining of the cell wall especially increased in case of cobalt and iron accumulation.
- MeSH
- Biomass MeSH
- Cryptococcus metabolism MeSH
- Nitrogen metabolism MeSH
- Cadmium chemistry metabolism pharmacokinetics MeSH
- Cobalt chemistry metabolism pharmacokinetics MeSH
- Polyphosphates chemistry metabolism pharmacokinetics MeSH
- Sorption Detoxification MeSH
- Iron chemistry metabolism pharmacokinetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nitrogen MeSH
- Cadmium MeSH
- Cobalt MeSH
- Polyphosphates MeSH
- Iron MeSH
Basidiomycetous and ascomycetous yeast species were tested for manganese tolerance. Basidiomycetous Cryptococcus humicola, Cryptococcus terricola, Cryptococcus curvatus and ascomycetous Candida maltosa, Kluyveromyces marxianus, Kuraishia capsulata, Lindnera fabianii and Sacharomyces cerevisiae were able to grow at manganese excess (2.5 mmol/L), while the growth of basidiomycetous Rhodotorula bogoriensis was completely suppressed. The lag phase duration increased and the exponential growth rate decreased at manganese excess. The increase of cell size and enlargement of vacuoles were characteristics for the cells grown at manganese excess. The alterations in inorganic polyphosphate content and cellular localization were studied. L. fabianii, K. capsulata, C. maltosa, and Cr. humicola accumulated the higher amounts of inorganic polyphosphates, while Cr. terricola and Cr. curvatus demonstrated no such accumulation. The polyphosphate content in the cell wall tested by DAPI staining increased in all species under the study; however, this effect was more pronounced in Cr. terricola and Cr. curvatus. The accumulation of Mg(2+) in the cell wall under Mn(2+) excess was observed in Cr. humicola, Cr. curvatus and Cr. terricola. The accumulation of polyphosphate and magnesium in the cell wall was supposed to be a factor of manganese tolerance in yeasts.
- MeSH
- Cell Wall chemistry MeSH
- Magnesium metabolism MeSH
- Yeasts cytology drug effects growth & development metabolism MeSH
- Manganese metabolism MeSH
- Polyphosphates metabolism MeSH
- Drug Tolerance * MeSH
- Vacuoles metabolism ultrastructure MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Magnesium MeSH
- Manganese MeSH
- Polyphosphates MeSH
Four plants, Cirsium arvense (creeping thistle), Equisetum arvense (field horsetail), Oxalis acetosella (wood sorrel) and Phragmites australis (common reed), which grew in an abandoned Sb-mining area in Pernek (Malé Karpaty Mts., Slovakia), were investigated for the yeast species. Yeasts were isolated from both the leaves of the plants and the soil adjacent to the plants. In total, 65 yeast cultures, belonging to 11 ascomycetous and 5 basidiomycetous yeast species, were isolated. The species most frequently isolated from both the soil and leaf samples were Trichosporon porosum, Galactomyces candidus and Candida solani, whereas Aureobasidium pullulans, Candida tsuchiyae and Sporidiobolus metaroseus were isolated exclusively from the plant leaves. All the yeast species isolated were tested for their tolerance to two heavy metals (Cd, Zn) and three metalloids (As, Sb and Si). The yeasts isolated from both the leaves and soils exhibited a high tolerance level to both As and Sb, present in elevated concentrations at the locality. Among the yeast species tested, Cryptococcus musci, a close relative to Cryptococcus humicola, was the species most tolerant to all the chemical elements tested, with the exception of Si. It grew in the presence of 200 mmol/L Zn, 200 mmol/L Cd, 60 mmol/L As and 50 mmol/L Sb, and therefore, it can be considered as a multi-tolerant species. Some of the yeast species were tolerant to the individual chemical elements. The yeast-like species Trichosporon laibachii exhibited the highest tolerance to Si of all yeasts tested, and Cryptococcus flavescens and Lindnera saturnus showed the same tolerance as Cryptococcus musci to Zn and As, respectively. The majority of the yeasts showed a notably low tolerance to Cd (not exceeded 0.5 mmol/L), which was present in small amounts in the soil. However, Candida solani, isolated from the soil, exhibited a higher tolerance to Cd (20 mmol/L) than to As (2 mmol/L).
- MeSH
- Adaptation, Biological * MeSH
- Mining * MeSH
- Yeasts * growth & development isolation & purification MeSH
- Plant Leaves microbiology MeSH
- Environmental Microbiology * MeSH
- Hazardous Substances * MeSH
- Soil chemistry MeSH
- Plants microbiology MeSH
- Environment * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Slovakia MeSH
- Names of Substances
- Hazardous Substances * MeSH
- Soil MeSH