Nejvíce citovaný článek - PubMed ID 24583913
Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions
Nutrient deficiency induces a variety of cellular responses, including an increase in lipid accumulation in microalgae. Nitrogen starvation is the most studied deprivation. Here, we determine the effects of phosphorus and sulfur limitation on lipid accumulation in Chlorella vulgaris. A set of 9 experiments were performed, varying the initial concentration of these nutrients (set to 0, 50, and 100% of their original composition in Bold's basal medium). According to our results, the variation of P and S modified the specific growth rate, lag phase, and cell generation time. The ratio of 50%P and 0%S significantly increased the total lipid concentration. The fatty acid profile was dominated by C16:0, C18:0, and C18:1; a considerable increase in C20:5 was observed with 0%P and 50%S and 0%P and 100%S. Regarding neutral lipids, the response surface methodology (RSM) indicates that the maximum was observed when S was between 40 and 60% and P was between 95 and 100%. Therefore, the enhanced production of lipids caused by P and S limitation may contribute to the efficient oil production useful for algal biofuels.
- Klíčová slova
- Fatty acids, Lipids, Microalgae, Nutrient deficiency,
- MeSH
- biomasa MeSH
- biopaliva MeSH
- Chlorella vulgaris * metabolismus MeSH
- dusík metabolismus MeSH
- fosfor metabolismus MeSH
- lipidy MeSH
- mastné kyseliny * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biopaliva MeSH
- dusík MeSH
- fosfor MeSH
- lipidy MeSH
- mastné kyseliny * MeSH
Green algae are fast-growing microorganisms that are considered promising for the production of starch and neutral lipids, and the chlorococcal green alga Parachlorella kessleri is a favorable model, as it can produce both starch and neutral lipids. P. kessleri commonly divides into more than two daughter cells by a specific mechanism-multiple fission. Here, we used synchronized cultures of the alga to study the effects of supra-optimal temperature. Synchronized cultures were grown at optimal (30 °C) and supra-optimal (40 °C) temperatures and incident light intensities of 110 and 500 μmol photons m-2 s-1. The time course of cell reproduction (DNA replication, cellular division), growth (total RNA, protein, cell dry matter, cell size), and synthesis of energy reserves (net starch, neutral lipid) was studied. At 40 °C, cell reproduction was arrested, but growth and accumulation of energy reserves continued; this led to the production of giant cells enriched in protein, starch, and neutral lipids. Furthermore, we examined whether the increased temperature could alleviate the effects of deuterated water on Parachlorella kessleri growth and division; results show that supra-optimal temperature can be used in algal biotechnology for the production of protein, (deuterated) starch, and neutral lipids.
- Klíčová slova
- Parachlorella kessleri, cell cycle, deuterated lipid, deuterated starch, deuterium, energy reserves, growth processes, microalgae, reproduction events, starch, supra-optimal temperature,
- MeSH
- biomasa MeSH
- buněčné dělení fyziologie MeSH
- Chlorophyta růst a vývoj MeSH
- lipidy MeSH
- metabolismus lipidů fyziologie MeSH
- mikrořasy metabolismus MeSH
- škrob metabolismus MeSH
- teplota * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidy MeSH
- škrob MeSH
Multiple fission is a cell cycle variation leading to the production of more than two daughter cells. Here, we used synchronized cultures of the chlorococcal green alga Parachlorella kessleri to study its growth and pattern of cell division under varying light intensities. The time courses of DNA replication, nuclear and cellular division, cell size, total RNA, protein content, dry matter and accumulation of starch were observed at incident light intensities of 110, 250 and 500 µmol photons m-2s-1. Furthermore, we studied the effect of deuterated water on Parachlorella kessleri growth and division, to mimic the effect of stress. We describe a novel multiple fission cell cycle pattern characterized by multiple rounds of DNA replication leading to cell polyploidization. Once completed, multiple nuclear divisions were performed with each of them, immediately followed by protoplast fission, terminated by the formation of daughter cells. The multiple fission cell cycle was represented by several consecutive doublings of growth parameters, each leading to the start of a reproductive sequence. The number of growth doublings increased with increasing light intensity and led to division into more daughter cells. This study establishes the baseline for cell cycle research at the molecular level as well as for potential biotechnological applications, particularly directed synthesis of (deuterated) starch and/or neutral lipids as carbon and energy reserves.
- Klíčová slova
- Parachlorella kessleri, cell cycle pattern, deuterated lipid, deuterated starch, deuterium, energy reserves, growth processes, light intensity, reproduction events,
- MeSH
- buněčné kultury * MeSH
- buněčný cyklus * MeSH
- Chlorophyta růst a vývoj MeSH
- světlo * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Extensive in vivo replacement of hydrogen by deuterium, a stable isotope of hydrogen, induces a distinct stress response, reduces cell growth and impairs cell division in various organisms. Microalgae, including Chlamydomonas reinhardtii, a well-established model organism in cell cycle studies, are no exception. Chlamydomonas reinhardtii, a green unicellular alga of the Chlorophyceae class, divides by multiple fission, grows autotrophically and can be synchronized by alternating light/dark regimes; this makes it a model of first choice to discriminate the effect of deuterium on growth and/or division. Here, we investigate the effects of high doses of deuterium on cell cycle progression in C. reinhardtii. Synchronous cultures of C. reinhardtii were cultivated in growth medium containing 70 or 90% D2O. We characterize specific deuterium-induced shifts in attainment of commitment points during growth and/or division of C. reinhardtii, contradicting the role of the "sizer" in regulating the cell cycle. Consequently, impaired cell cycle progression in deuterated cultures causes (over)accumulation of starch and lipids, suggesting a promising potential for microalgae to produce deuterated organic compounds.
- Klíčová slova
- Chlamydomonas reinhardtii, cell cycle, cell division, commitment point, deuterium, heavy water, multiple fission, stress,
- MeSH
- buněčné dělení účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- Chlamydomonas reinhardtii růst a vývoj metabolismus MeSH
- deuterium škodlivé účinky chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- deuterium MeSH
Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism.
- MeSH
- barvení a značení MeSH
- biologické modely MeSH
- Chlorophyta cytologie růst a vývoj metabolismus ultrastruktura MeSH
- elektrony * MeSH
- fosfáty metabolismus MeSH
- lipidy chemie MeSH
- polyfosfáty metabolismus MeSH
- sekvenční analýza RNA MeSH
- síra metabolismus MeSH
- transkriptom genetika MeSH
- zobrazování trojrozměrné MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfáty MeSH
- lipidy MeSH
- polyfosfáty MeSH
- síra MeSH
BACKGROUND: Algae have attracted attention as sustainable producers of lipid-containing biomass for food, animal feed, and for biofuels. Parachlorella kessleri, a unicellular green alga belonging to the class Trebouxiophyceae, achieves very high biomass, lipid, and starch productivity levels. However, further biotechnological exploitation has been hampered by a lack of genomic information. RESULTS: Here, we sequenced the whole genome and transcriptome, and analyzed the behavior of P. kessleri NIES-2152 under lipid production-inducing conditions. The assembly includes 13,057 protein-coding genes in a 62.5-Mbp nuclear genome. Under conditions of sulfur deprivation, lipid accumulation was correlated with the transcriptomic induction of enzymes involved in sulfur metabolism, triacylglycerol (TAG) synthesis, autophagy, and remodeling of light-harvesting complexes. CONCLUSIONS: Three-dimensional transmission electron microscopy (3D-TEM) revealed extensive alterations in cellular anatomy accompanying lipid hyperaccumulation. The present 3D-TEM results, together with transcriptomic data support the finding that upregulation of TAG synthesis and autophagy are potential key mediators of the hyperaccumulation of lipids under conditions of nutrient stress.
- Klíčová slova
- 3D-TEM, Genome, Green alga, Lipid body, Parachlorella kessleri, RNA-seq, Transcriptome, Whole-genome sequence,
- Publikační typ
- časopisecké články MeSH