Nejvíce citovaný článek - PubMed ID 24599656
Removal and seasonal variability of selected analgesics/anti-inflammatory, anti-hypertensive/cardiovascular pharmaceuticals and UV filters in wastewater treatment plant
Global climate changes cause water scarcity in many regions, and the sustainable use of recycled water appears crucial, especially in agriculture. However, potentially hazardous compounds such as pharmaceuticals can enter the food chain and pose severe risks. This paper aims to study the presence of selected pharmaceutical active compounds (PhACs) and their metabolites in crops grown in aeroponic conditions and evaluate the potential of PhAC plant uptake. A solvent extraction with an acidified mixture of acetonitrile and water followed by LC-HRMS was developed and validated for quantifying nine pharmaceuticals and their nine metabolites in three plants. We aimed for a robust method with a wide linear range because an extensive concentration range in different matrices was expected. The developed method proved rapid and reliable determination of selected pharmaceuticals in plants in the wide concentration range of 10 to 20,000 ng g-1 and limit of detection range 0.4 to 9.0 ng g-1. The developed method was used to study the uptake and translocation of pharmaceuticals and their metabolites in plant tissues from an aeroponic experiment at three different pH levels. Carbamazepine accumulated more in the leaves of spinach than in arugula. On the other hand, sulfamethoxazole and clindamycin evinced higher accumulation in roots than in leaves, comparable in both plants. The expected effect of pH on plants' uptake was not significant.
- Klíčová slova
- Extraction, Pharmaceutical, Plant uptake, Soil pollution,
- MeSH
- koncentrace vodíkových iontů MeSH
- léčivé přípravky MeSH
- voda MeSH
- zemědělské plodiny * MeSH
- zemědělství * metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- léčivé přípravky MeSH
- voda MeSH
A conventional evaluation methodology for drinking water pollution focuses on analysing hundreds of compounds, usually by liquid chromatography-tandem mass spectrometry. High-resolution mass spectrometry allows comprehensive evaluation of all detected signals (compounds) based on their elemental composition, intensity, and numbers. We combined target analysis of 192 emerging micropollutants with nontarget (NT) full-scan/MS/MS methods to describe the impact of treatment steps in detail and assess drinking water treatment efficiency without compound identification. The removal efficiency based on target analytes ranged from - 143 to 97%, depending on the treatment section, technologies, and season. The same effect calculated for all signals detected in raw water by the NT method ranged between 19 and 65%. Ozonation increased the removal of micropollutants from the raw water but simultaneously caused the formation of new compounds. Moreover, ozonation byproducts showed higher persistence than products formed during other types of treatment. We evaluated chlorinated and brominated organics detected by specific isotopic patterns within the developed workflow. These compounds indicated anthropogenic raw water pollution but also potential treatment byproducts. We could match some of these compounds with libraries available in the software. We can conclude that passive sampling combined with nontargeted analysis shows to be a promising approach for water treatment control, especially for long-term monitoring of changes in technology lines because passive sampling dramatically reduces the number of samples and provides time-weighted average information for 2 to 4 weeks.
- Klíčová slova
- Drinking water treatment, Log2FoldChange, Nontarget analysis, Organic micropollutants, Removal efficiency, Treatment effect,
- MeSH
- chemické látky znečišťující vodu * analýza MeSH
- čištění vody * metody MeSH
- monitorování životního prostředí metody MeSH
- ozon * analýza MeSH
- pitná voda * analýza MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- ozon * MeSH
- pitná voda * MeSH
The accumulation of six pharmaceuticals of different therapeutic uses has been thoroughly investigated and compared between onion, spinach, and radish plants grown in six soil types. While neutral molecules (e.g., carbamazepine (CAR) and some of its metabolites) were efficiently accumulated and easily translocated to the plant leaves (onion > radish > spinach), the same for ionic (both anionic and cationic) molecules seems to be minor to moderate. The maximum accumulation of CAR crosses 38,000 (onion), 42,000 (radish), and 7000 (spinach) ng g-1 (dry weight) respectively, in which the most majority of them happened within the plant leaves. Among the metabolites, the accumulation of carbamazepine 10,11-epoxide (EPC - a primary CAR metabolite) was approximately 19,000 (onion), 7000 (radish), and 6000 (spinach) ng g-1 (dry weight) respectively. This trend was considerably similar even when all these pharmaceuticals applied together. The accumulation of most other molecules (e.g., citalopram, clindamycin, clindamycin sulfoxide, fexofenadine, irbesartan, and sulfamethoxazole) was restricted to plant roots, except for certain cases (e.g., clindamycin and clindamycin sulfoxide in onion leaves). Our results clearly demonstrated the potential role of this accumulation process on the entrance of pharmaceuticals/metabolites into the food chain, which eventually becomes a threat to associated living biota.
- Klíčová slova
- Metabolism, Pharmaceutical accumulation, Pharmaceuticals, Plant-dependent transformation of pharmaceuticals, Plants, Root uptake, Soils, Translocation of pharmaceuticals in plant,
- MeSH
- česneky MeSH
- klindamycin metabolismus MeSH
- látky znečišťující půdu * analýza MeSH
- léčivé přípravky metabolismus MeSH
- půda chemie MeSH
- Raphanus * metabolismus MeSH
- rostliny metabolismus MeSH
- Spinacia oleracea metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- klindamycin MeSH
- látky znečišťující půdu * MeSH
- léčivé přípravky MeSH
- půda MeSH
Ibuprofen separation from water by adsorption and pertraction processes has been studied, comparing 16 different membranes. Tailor-made membranes based on Matrimid, Ultem, and diaminobenzene/diaminobenzoic acid with various contents of zeolite and graphene oxide, have been compared to the commercial polystyrene, polypropylene, and polydimethylsiloxane polymeric membranes. Experimental results revealed lower ibuprofen adsorption onto commercial membranes than onto tailor-made membranes (10-15% compared to 50-70%). However, the mechanical stability of commercial membranes allowed the pertraction process application, which displayed a superior quantity of ibuprofen eliminated. Additionally, the saturation of the best-performing commercial membrane, polydimethylsiloxane, was notably prevented by atomic layer deposition of (3-aminopropyl)triethoxysilane.
- Klíčová slova
- atomic layer deposition, dense polymer membrane, ibuprofen, water treatment,
- Publikační typ
- časopisecké články MeSH
Membrane technologies are nowadays widely used; especially various types of filtration or reverse osmosis in households, desalination plants, pharmaceutical applications etc. Facing water pollution, they are also applied to eliminate emerging contaminants from water. Incomplete knowledge directs the composition of membranes towards more and more dense materials known for their higher selectivity compared to porous constituents. This paper evaluates advantages and disadvantages of well-known membrane materials that separate on the basis of particle size, usually exposed to a large amount of water, versus dense hydrophobic membranes with target transport of emerging contaminants through a selective barrier. In addition, the authors present several membrane processes employing the second type of membrane.
- Klíčová slova
- dense membranes, emerging contaminants, water quality,
- Publikační typ
- časopisecké články MeSH