Most cited article - PubMed ID 24820101
White-nose syndrome fungus: a generalist pathogen of hibernating bats
INTRODUCTION: Serological tests can be used to test whether an animal has been exposed to an infectious agent, and whether its immune system has recognized and produced antibodies against it. Paired samples taken several weeks apart then document an ongoing infection and/or seroconversion. METHODS: In the absence of a commercial kit, we developed an indirect enzyme-linked immunosorbent assay (ELISA) to detect the fungus-specific antibodies for Pseudogymnoascus destructans, the agent of white-nose syndrome in bats. RESULTS AND DISCUSSION: Samples collected from European Myotis myotis (n=35) and Asian Myotis dasycneme (n=11) in their hibernacula at the end of the hibernation period displayed 100% seroprevalence of antibodies against P. destructans, demonstrating a high rate of exposure. Our results showed that the higher the titre of antibodies against P. destructans, the lower the infection intensity, suggesting that a degree of protection is provided by this arm of adaptive immunity in Palearctic bats. Moreover, P. destructans infection appears to be a seasonally self-limiting disease of Palearctic bats showing seroconversion as the WNS skin lesions heal in the early post-hibernation period.
- Keywords
- Myotis bat species, adaptive antifungal immunity, antibody prevalence, disease severity, emerging wildlife infection, indirect ELISA,
- MeSH
- Ascomycota MeSH
- Chiroptera * MeSH
- Skin Diseases * MeSH
- Mycoses * epidemiology veterinary MeSH
- Seroepidemiologic Studies MeSH
- Syndrome MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: North American bat populations have suffered severe declines over the last decade due to the Pseudogymnoascus destructans fungus infection. The skin disease associated with this causative agent, known as white-nose syndrome (WNS), is specific to bats hibernating in temperate regions. As cultured fungal isolates are required for epidemiological and phylogeographical studies, the purpose of the present work was to compare the efficacy and reliability of different culture approaches based on either skin swabs or wing membrane tissue biopsies for obtaining viable fungal isolates of P. destructans. RESULTS: In total, we collected and analysed 69 fungal and 65 bacterial skin swabs and 51 wing membrane tissue biopsies from three bat species in the Czech Republic, Poland and the Republic of Armenia. From these, we obtained 12 viable P. destructans culture isolates. CONCLUSIONS: Our results indicated that the efficacy of cultures based on wing membrane biopsies were significantly higher. Cultivable samples tended to be based on collections from bats with lower body surface temperature and higher counts of UV-visualised lesions. While cultures based on both skin swabs and wing membrane tissue biopsies can be utilised for monitoring and surveillance of P. destructans in bat populations, wing membrane biopsies guided by UV light for skin lesions proved higher efficacy. Interactions between bacteria on the host's skin also appear to play an important role.
- Keywords
- Bats, Fungal culture, Fungal infection, Pseudogymnoascus destructans skin microbiota, UV lesions,
- MeSH
- Chiroptera * microbiology MeSH
- Hibernation * MeSH
- Skin Diseases * veterinary MeSH
- Culture Media MeSH
- Skin pathology MeSH
- Reproducibility of Results MeSH
- Syndrome MeSH
- Ultraviolet Rays MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Culture Media MeSH
BACKGROUND: Palearctic bats host a diversity of lyssaviruses, though not the classical rabies virus (RABV). As surveillance for bat rabies over the Palearctic area covering Central and Eastern Europe and Siberian regions of Russia has been irregular, we lack data on geographic and seasonal patterns of the infection. RESULTS: To address this, we undertook serological testing, using non-lethally sampled blood, on 1027 bats of 25 species in Bulgaria, the Czech Republic, Poland, Russia and Slovenia between 2014 and 2018. The indirect enzyme-linked immunosorbent assay (ELISA) detected rabies virus anti-glycoprotein antibodies in 33 bats, giving an overall seroprevalence of 3.2%. Bat species exceeding the seroconversion threshold included Myotis blythii, Myotis gracilis, Myotis petax, Myotis myotis, Murina hilgendorfi, Rhinolophus ferrumequinum and Vespertilio murinus. While Myotis species (84.8%) and adult females (48.5%) dominated in seropositive bats, juveniles of both sexes showed no difference in seroprevalence. Higher numbers tested positive when sampled during the active season (10.5%), as compared with the hibernation period (0.9%). Bat rabies seroprevalence was significantly higher in natural habitats (4.0%) compared with synanthropic roosts (1.2%). Importantly, in 2018, we recorded 73.1% seroprevalence in a cave containing a M. blythii maternity colony in the Altai Krai of Russia. CONCLUSIONS: Identification of such "hotspots" of non-RABV lyssavirus circulation not only provides important information for public health protection, it can also guide research activities aimed at more in-depth bat rabies studies.
- Keywords
- Chiroptera, Europe, Siberia, blood samples, rabies, seroprevalence,
- MeSH
- Chiroptera virology MeSH
- Ecosystem MeSH
- Rhabdoviridae Infections epidemiology MeSH
- Caves MeSH
- Lyssavirus isolation & purification MeSH
- Antibodies, Viral blood MeSH
- Seasons MeSH
- Seroepidemiologic Studies MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe epidemiology MeSH
- Russia epidemiology MeSH
- Names of Substances
- Antibodies, Viral MeSH
Understanding how context (e.g., host species, environmental conditions) drives disease susceptibility is an essential goal of disease ecology. We hypothesized that in bat white-nose syndrome (WNS), species-specific host-pathogen interactions may partly explain varying disease outcomes among host species. We characterized bat and pathogen transcriptomes in paired samples of lesion-positive and lesion-negative wing tissue from bats infected with Pseudogymnoascus destructans in three parallel experiments. The first two experiments analyzed samples collected from the susceptible Nearctic Myotis lucifugus and the less-susceptible Nearctic Eptesicus fuscus, following experimental infection and hibernation in captivity under controlled conditions. The third experiment applied the same analyses to paired samples from infected, free-ranging Myotis myotis, a less susceptible, Palearctic species, following natural infection and hibernation (n = 8 sample pairs/species). Gene expression by P. destructans was similar among the three host species despite varying environmental conditions among the three experiments and was similar within each host species between saprophytic contexts (superficial growth on wings) and pathogenic contexts (growth in lesions on the same wings). In contrast, we observed qualitative variation in host response: M. lucifugus and M. myotis exhibited systemic responses to infection, while E. fuscus up-regulated a remarkably localized response. Our results suggest potential phylogenetic determinants of response to WNS and can inform further studies of context-dependent host-pathogen interactions.
- Keywords
- Eptesicus fuscus, Myotis lucifugus, Myotis myotis, Pseudogymnoascus destructans, Disease ecology, emerging infectious diseases, host–pathogen interactions, susceptibility, virulence,
- MeSH
- Ascomycota genetics pathogenicity MeSH
- Chiroptera classification microbiology MeSH
- Dermatomycoses microbiology veterinary MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Host-Pathogen Interactions genetics MeSH
- Wings, Animal microbiology pathology MeSH
- Nose microbiology pathology MeSH
- Gene Expression Profiling * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The greater mouse-eared bat (Myotis myotis) is a flagship species for the protection of hibernation and summer maternity roosts in the Western Palearctic region. A range of pathogenic agents is known to put pressure on populations, including the white-nose syndrome fungus, for which the species shows the highest prevalence and infection intensity of all European bat species. Here, we perform analysis of blood parameters characteristic for the species during its natural annual life cycle in order to establish reference values. Despite sexual dimorphism and some univariate differences, the overall multivariate pattern suggests low seasonal variation with homeostatic mechanisms effectively regulating haematology and blood biochemistry ranges. Overall, the species displayed a high haematocrit and haemoglobin content and high concentration of urea, while blood glucose levels in swarming and hibernating bats ranged from hypo- to normoglycaemic. Unlike blood pH, concentrations of electrolytes were wide ranging. To conclude, baseline data for blood physiology are a useful tool for providing suitable medical care in rescue centres, for studying population health in bats adapting to environmental change, and for understanding bat responses to stressors of conservation and/or zoonotic importance.
- MeSH
- Chiroptera blood physiology MeSH
- Hematocrit standards MeSH
- Hematologic Tests standards MeSH
- Hibernation MeSH
- Climate MeSH
- Reference Values MeSH
- Seasons MeSH
- Sentinel Species physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Arctic Regions epidemiology MeSH
Resistance and tolerance allow organisms to cope with potentially life-threatening pathogens. Recently introduced pathogens initially induce resistance responses, but natural selection favors the development of tolerance, allowing for a commensal relationship to evolve. Mycosis by Pseudogymnoascus destructans, causing white-nose syndrome (WNS) in Nearctic hibernating bats, has resulted in population declines since 2006. The pathogen, which spread from Europe, has infected species of Palearctic Myotis for a longer period. We compared ecologically relevant responses to the fungal infection in the susceptible Nearctic M. lucifugus and less susceptible Palearctic M. myotis, to uncover factors contributing to survival differences in the two species. Samples were collected from euthermic bats during arousal from hibernation, a naturally occurring phenomenon, during which transcriptional responses are activated. We compared the whole-transcriptome responses in wild bats infected with P. destructans hibernating in their natural habitat. Our results show dramatically different local transcriptional responses to the pathogen between uninfected and infected samples from the two species. Whereas we found 1526 significantly upregulated or downregulated transcripts in infected M. lucifugus, only one transcript was downregulated in M. myotis. The upregulated response pathways in M. lucifugus include immune cell activation and migration, and inflammatory pathways, indicative of an unsuccessful attempt to resist the infection. In contrast, M. myotis appears to tolerate P. destructans infection by not activating a transcriptional response. These host-microbe interactions determine pathology, contributing to WNS susceptibility, or commensalism, promoting tolerance to fungal colonization during hibernation that favors survival.
- Keywords
- Host–pathogen interaction, Infection, Opportunistic pathogen, Resistance, Tolerance,
- MeSH
- Chiroptera * MeSH
- Hibernation * MeSH
- Mycoses * MeSH
- RNA MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- RNA MeSH
White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans that is devastating to Nearctic bat populations but tolerated by Palearctic bats. Temperature is a factor known to be important for fungal growth and bat choice of hibernation. Here we investigated the effect of temperature on the pathogenic fungal growth in the wild across the Palearctic. We modelled body surface temperature of bats with respect to fungal infection intensity and disease severity and were able to relate this to the mean annual surface temperature at the site. Bats that hibernated at lower temperatures had less fungal growth and fewer skin lesions on their wings. Contrary to expectation derived from laboratory P. destructans culture experiments, natural infection intensity peaked between 5 and 6°C and decreased at warmer hibernating temperature. We made predictive maps based on bat species distributions, temperature and infection intensity and disease severity data to determine not only where P. destructans will be found but also where the infection will be invasive to bats across the Palearctic. Together these data highlight the mechanistic model of the interplay between environmental and biological factors, which determine progression in a wildlife disease.
- Keywords
- Chiroptera, fungal load, fuzzy regression, histopathology, thermal preference, white-nose syndrome,
- Publication type
- Journal Article MeSH
BACKGROUND: Spatiotemporal distribution patterns are important infectious disease epidemiological characteristics that improve our understanding of wild animal population health. The skin infection caused by the fungus Pseudogymnoascus destructans emerged as a panzootic disease in bats of the northern hemisphere. However, the infection status of bats over an extensive geographic area of the Russian Federation has remained understudied. RESULTS: We examined bats at the geographic limits of bat hibernation in the Palearctic temperate zone and found bats with white-nose syndrome (WNS) on the European slopes of the Ural Mountains through the Western Siberian Plain, Central Siberia and on to the Far East. We identified the diagnostic symptoms of WNS based on histopathology in the Northern Ural region at 11° (about 1200 km) higher latitude than the current northern limit in the Nearctic. While body surface temperature differed between regions, bats at all study sites hibernated in very cold conditions averaging 3.6 °C. Each region also differed in P. destructans fungal load and the number of UV fluorescent skin lesions indicating skin damage intensity. Myotis bombinus, M. gracilis and Murina hilgendorfi were newly confirmed with histopathological symptoms of WNS. Prevalence of UV-documented WNS ranged between 16 and 76% in species of relevant sample size. CONCLUSIONS: To conclude, the bat pathogen P. destructans is widely present in Russian hibernacula but infection remains at low intensity, despite the high exposure rate.
- Keywords
- Chiroptera, Distribution, Hibernation, Prevalence, Pseudogymnoascus destructans,
- MeSH
- Ascomycota * MeSH
- Chiroptera * classification genetics MeSH
- Dermatomycoses epidemiology veterinary MeSH
- Animals, Wild MeSH
- Species Specificity MeSH
- Hibernation MeSH
- Molecular Typing MeSH
- Nose * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Russia epidemiology MeSH
In underground hibernacula temperate northern hemisphere bats are exposed to Pseudogymnoascus destructans, the fungal agent of white-nose syndrome. While pathological and epidemiological data suggest that Palearctic bats tolerate this infection, we lack knowledge about bat health under pathogen pressure. Here we report blood profiles, along with body mass index (BMI), infection intensity and hibernation temperature, in greater mouse-eared bats (Myotis myotis). We sampled three European hibernacula that differ in geomorphology and microclimatic conditions. Skin lesion counts differed between contralateral wings of a bat, suggesting variable exposure to the fungus. Analysis of blood parameters suggests a threshold of ca. 300 skin lesions on both wings, combined with poor hibernation conditions, may distinguish healthy bats from those with homeostatic disruption. Physiological effects manifested as mild metabolic acidosis, decreased glucose and peripheral blood eosinophilia which were strongly locality-dependent. Hibernating bats displaying blood homeostasis disruption had 2 °C lower body surface temperatures. A shallow BMI loss slope with increasing pathogen load suggested a high degree of infection tolerance. European greater mouse-eared bats generally survive P. destructans invasion, despite some health deterioration at higher infection intensities (dependant on hibernation conditions). Conservation measures should minimise additional stressors to conserve constrained body reserves of bats during hibernation.
- MeSH
- Ascomycota physiology MeSH
- Chiroptera blood microbiology physiology MeSH
- Hibernation * MeSH
- Body Mass Index MeSH
- Host-Pathogen Interactions * MeSH
- Skin Diseases blood microbiology pathology veterinary MeSH
- Mycoses blood microbiology pathology veterinary MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
While white-nose syndrome (WNS) has decimated hibernating bat populations in the Nearctic, species from the Palearctic appear to cope better with the fungal skin infection causing WNS. This has encouraged multiple hypotheses on the mechanisms leading to differential survival of species exposed to the same pathogen. To facilitate intercontinental comparisons, we proposed a novel pathogenesis-based grading scheme consistent with WNS diagnosis histopathology criteria. UV light-guided collection was used to obtain single biopsies from Nearctic and Palearctic bat wing membranes non-lethally. The proposed scheme scores eleven grades associated with WNS on histopathology. Given weights reflective of grade severity, the sum of findings from an individual results in weighted cumulative WNS pathology score. The probability of finding fungal skin colonisation and single, multiple or confluent cupping erosions increased with increase in Pseudogymnoascus destructans load. Increasing fungal load mimicked progression of skin infection from epidermal surface colonisation to deep dermal invasion. Similarly, the number of UV-fluorescent lesions increased with increasing weighted cumulative WNS pathology score, demonstrating congruence between WNS-associated tissue damage and extent of UV fluorescence. In a case report, we demonstrated that UV-fluorescence disappears within two weeks of euthermy. Change in fluorescence was coupled with a reduction in weighted cumulative WNS pathology score, whereby both methods lost diagnostic utility. While weighted cumulative WNS pathology scores were greater in the Nearctic than Palearctic, values for Nearctic bats were within the range of those for Palearctic species. Accumulation of wing damage probably influences mortality in affected bats, as demonstrated by a fatal case of Myotis daubentonii with natural WNS infection and healing in Myotis myotis. The proposed semi-quantitative pathology score provided good agreement between experienced raters, showing it to be a powerful and widely applicable tool for defining WNS severity.
- MeSH
- Ascomycota genetics physiology MeSH
- Chiroptera metabolism microbiology MeSH
- DNA, Fungal genetics MeSH
- Phylogeny MeSH
- Skin Diseases microbiology pathology MeSH
- Wings, Animal microbiology pathology radiation effects MeSH
- Linear Models MeSH
- Optical Imaging MeSH
- Severity of Illness Index MeSH
- Ultraviolet Rays MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Fungal MeSH