Nejvíce citovaný článek - PubMed ID 24911066
Newborn boys and girls differ in the lipid composition of vernix caseosa
Wax esters play critical roles in biological systems, serving functions from energy storage to chemical signaling. Their diversity is attributed to variations in alcohol and acyl chains, including their length, branching, and the stereochemistry of double bonds. Traditional analysis by mass spectrometry with collisional activations (CID, HCD) offers insights into acyl chain lengths and unsaturation level. Still, it falls short in pinpointing more nuanced structural features like the position of double bonds. As a solution, this study explores the application of 213-nm ultraviolet photodissociation (UVPD) for the detailed structural analysis of wax esters. It is shown that lithium adducts provide unique fragments as a result of Norrish and Norrish-Yang reactions at the ester moieties and photoinduced cleavages of double bonds. The product ions are useful for determining chain lengths and localizing double bonds. UVPD spectra of various wax esters are presented systematically, and the effect of activation time is discussed. The applicability of tandem mass spectrometry with UVPD is demonstrated for wax esters from natural sources. The UHPLC analysis of jojoba oil proves the compatibility of MS2 UVPD with the chromatography time scale, and a direct infusion is used to analyze wax esters from vernix caseosa. Data shows the potential of UVPD and its combination with CID or HCD in advancing our understanding of wax ester structures.
- Klíčová slova
- Double bond, Mass spectrometry, Photochemistry, UV photodissociation, Wax ester,
- Publikační typ
- časopisecké články MeSH
Fatty acid isomers are responsible for an under-reported lipidome diversity across all kingdoms of life. Isomers of unsaturated fatty acids are often masked in contemporary analysis by incomplete separation and the absence of sufficiently diagnostic methods for structure elucidation. Here, we introduce a comprehensive workflow, to discover unsaturated fatty acids through coupling liquid chromatography and mass spectrometry with gas-phase ozonolysis of double bonds. The workflow encompasses semi-automated data analysis and enables de novo identification in complex media including human plasma, cancer cell lines and vernix caseosa. The targeted analysis including ozonolysis enables structural assignment over a dynamic range of five orders of magnitude, even in instances of incomplete chromatographic separation. Thereby we expand the number of identified plasma fatty acids two-fold, including non-methylene-interrupted fatty acids. Detection, without prior knowledge, allows discovery of non-canonical double bond positions. Changes in relative isomer abundances reflect underlying perturbations in lipid metabolism.
- MeSH
- hmotnostní spektrometrie metody MeSH
- lidé MeSH
- lipidomika MeSH
- mastné kyseliny * chemie MeSH
- nenasycené mastné kyseliny chemie MeSH
- ozon * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mastné kyseliny * MeSH
- nenasycené mastné kyseliny MeSH
- ozon * MeSH
The specific positions of carbon-carbon double bond(s) within an unsaturated fatty acid exert a significant effect on the physical and chemical properties of the lipid that ultimately inform its biological function(s). Contemporary liquid chromatography-mass spectrometry (MS) strategies based on electrospray ionization coupled to tandem MS can easily detect fatty acyl lipids but generally cannot reveal those specific site(s) of unsaturation. Herein, we describe a novel and versatile workflow whereby fatty acids are first converted to fixed charge N-(4-aminomethylphenyl)pyridinium (AMPP) derivatives and subsequently subjected to ozone-induced dissociation (OzID) on a modified triple quadrupole mass spectrometer. The AMPP modification enhances the detection of fatty acids introduced by direct infusion. Fragmentation of the derivatized fatty acids also provides diagnostic fragment ions upon collision-induced dissociation that can be targeted in precursor ion scans to subsequently trigger OzID analyses in an automated data-dependent workflow. It is these OzID analyses that provide unambiguous assignment of carbon-carbon double bond locations in the AMPP-derivatized fatty acids. The performance of this analysis pipeline is assessed in profiling the patterns of unsaturation in fatty acids within the complex biological secretion vernix caseosa. This analysis uncovers significant isomeric diversity within the fatty acid pool of this sample, including a number of hitherto unreported double bond positional isomers that hint at the activity of potentially new metabolic pathways.
- Klíčová slova
- Fatty Acids, Lipids, ozone-induced dissociation, vernix caseosa,
- MeSH
- lidé MeSH
- mastné kyseliny analýza chemie MeSH
- ozon chemie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- triglyceridy analýza chemie MeSH
- vernix caseosa chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mastné kyseliny MeSH
- ozon MeSH
- triglyceridy MeSH
Vernix caseosa, the waxy substance that coats the skin of newborn babies, has an extremely complex lipid composition. We have explored these lipids and identified nonhydroxylated 1-O-acylceramides (1-O-ENSs) as a new class of lipids in vernix caseosa. These ceramides mostly contain saturated C11-C38 ester-linked (1-O) acyls, saturated C12-C39 amide-linked acyls, and C16-C24 sphingoid bases. Because their fatty acyl chains are frequently branched, numerous molecular species were separable and detectable by HPLC/MS: we found more than 2,300 molecular species, 972 of which were structurally characterized. The most abundant 1-O-ENSs contained straight-chain and branched fatty acyls with 20, 22, 24, or 26 carbons in the 1-O position, 24 or 26 carbons in the N position, and sphingosine. The 1-O-ENSs were isolated using multistep TLC and HPLC and they accounted for 1% of the total lipid extract. The molecular species of 1-O-ENSs were separated on a C18 HPLC column using an acetonitrile/propan-2-ol gradient and detected by APCI-MS, and the structures were elucidated by high-resolution and tandem MS. Medium-polarity 1-O-ENSs likely contribute to the cohesiveness and to the waterproofing and moisturizing properties of vernix caseosa.
- Klíčová slova
- ceramides, lipidomics, lipids, mass spectrometry, skin,
- MeSH
- ceramidy metabolismus MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- hmotnostní spektrometrie MeSH
- kůže metabolismus MeSH
- lidé MeSH
- lipidy krev MeSH
- magnetická rezonanční spektroskopie MeSH
- novorozenec MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- vernix caseosa metabolismus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ceramidy MeSH
- lipidy MeSH
Cholesteryl esters of ω-(O-acyl)-hydroxy FAs (Chl-ωOAHFAs) were identified for the first time in vernix caseosa and characterized using chromatography and MS. Chl-ωOAHFAs were isolated using adsorption chromatography on silica gel and magnesium hydroxide. Their general structure was established using high-resolution and tandem MS of intact lipids, and products of their transesterification and derivatizations. Individual molecular species were characterized using nonaqueous reversed-phase HPLC coupled to atmospheric pressure chemical ionization. The analytes were detected as protonated molecules, and their structures were elucidated in the negative ion mode using controlled thermal decomposition and data-dependent fragmentation. About three hundred molecular species of Chl-ωOAHFAs were identified in this way. The most abundant Chl-ωOAHFAs contained 32:1 ω-hydroxy FA (ω-HFA) and 14:0, 15:0, 16:0, 16:1, and 18:1 FAs. The double bond in the 32:1 ω-HFA was in the n-7 and n-9 positions. Chl-ωOAHFAs are estimated to account for approximately 1-2% of vernix caseosa lipids.
- Klíčová slova
- cholesterol, lipidomics, mass spectrometry, neutral lipids, skin lipids,
- MeSH
- estery cholesterolu metabolismus MeSH
- lidé MeSH
- mastné kyseliny chemie metabolismus MeSH
- novorozenec MeSH
- vernix caseosa metabolismus MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- estery cholesterolu MeSH
- mastné kyseliny MeSH
The composition of wax esters (WE) in the fur of adult greater mouse-eared bats (Myotis myotis), either healthy or suffering from white nose syndrome (WNS) caused by the psychrophilic fungus Pseudogymnoascus destructans, was investigated by high-resolution mass spectrometry analysis in the positive ion mode. Profiling of lipid classes showed that WE are the most abundant lipid class, followed by cholesterol esters, and other lipid classes, e.g., triacylglycerols and phospholipids. WE abundance in non-polar lipids was gender-related, being higher in males than in females; in individuals suffering from WNS, both male and female, it was higher than in healthy counterparts. WE were dominated by species containing 18:1 fatty acids. Fatty alcohols were fully saturated, dominated by species containing 24, 25, or 26 carbon atoms. Two WE species, 18:1/18:0 and 18:1/20:0, were more abundant in healthy bats than in infected ones.
- MeSH
- Chiroptera anatomie a histologie metabolismus mikrobiologie MeSH
- hmotnostní spektrometrie MeSH
- lipidy analýza MeSH
- mastné alkoholy analýza MeSH
- mastné kyseliny analýza MeSH
- mykózy mikrobiologie patologie veterinární MeSH
- nos mikrobiologie patologie MeSH
- sexuální faktory MeSH
- vlasy, chlupy chemie mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- lipidy MeSH
- mastné alkoholy MeSH
- mastné kyseliny MeSH