Most cited article - PubMed ID 24929293
7-MEOTA-donepezil like compounds as cholinesterase inhibitors: Synthesis, pharmacological evaluation, molecular modeling and QSAR studies
Inhibiting the formation of amyloid fibrils is a crucial step in the prevention of the human neurological disorder, Alzheimer's disease (AD). Ionic liquid (IL) mediated interactions are an expedient approach that exhibits inhibition effects on amyloid fibrils. In view of the beneficial role of ILs, in this work we have explored complexation of anti-Alzheimer's drugs (i.e., tacrine and PC-37) and an amino acid-functionalized IL [AIL (4-PyC8)]. Maintaining standard physiological conditions, the binding mechanism, thermo-dynamical properties and binding parameters were studied by employing UV-vis, fluorescence, FTIR, 1H NMR, COSY and NOESY spectroscopy. The present investigation uncovers the fact that the interaction of anti-Alzheimer's drugs with 4-PyC8 is mediated through H-bonding and van der Waals forces. The Benesi-Hildebrand relation was used to evaluate the binding affinity and PC-37 showed the highest binding when complexed with 4-PyC8. FTIR spectra showed absorption bands at 3527.98 cm-1 and 3527.09 cm-1 for the PC-37 + 4-PyC8 system which is quite promising compared to tacrine. 1H-NMR experiments recorded deshielding for tacrine at relatively higher concentrations than PC-37. COSY investigations suggest that anti-Alzheimer's drugs after complexation with 4-PyC8 show a 1 : 1 ratio. The cross-peaks of the NOESY spectra involve correlations between anti-Alzheimer's drugs and AIL protons, indicating complexation between them. The observed results indicate that these complexes are expected to have a possible therapeutic role in reducing/inhibiting amyloid fibrils when incorporated into drug formulations.
- Publication type
- Journal Article MeSH
The increasing risk of radiation exposure underlines the need for novel radioprotective agents. Hence, a series of novel 1-(2-hydroxyethyl)piperazine derivatives were designed and synthesized. Some of the compounds protected human cells against radiation-induced apoptosis and exhibited low cytotoxicity. Compared to the previous series of piperazine derivatives, compound 8 exhibited a radioprotective effect on cell survival in vitro and low toxicity in vivo. It also enhanced the survival of mice 30 days after whole-body irradiation (although this increase was not statistically significant). Taken together, our in vitro and in vivo data indicate that some of our compounds are valuable for further research as potential radioprotectors.
- Keywords
- cytotoxicity, maximum tolerated dose, piperazine, radiation-protective agents, synthesis de novo,
- MeSH
- Survival Analysis MeSH
- Radiation, Ionizing MeSH
- Humans MeSH
- Maximum Tolerated Dose MeSH
- Molecular Conformation MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Cell Line, Tumor MeSH
- Piperazines administration & dosage adverse effects chemistry pharmacology MeSH
- Radiation-Protective Agents administration & dosage adverse effects chemistry pharmacology MeSH
- Cell Survival drug effects radiation effects MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Piperazines MeSH
- Radiation-Protective Agents MeSH
A combination of biochemical, biophysical and biological techniques was used to study calf thymus DNA interaction with newly synthesized 7-MEOTA-tacrine thiourea 12-17 and urea heterodimers 18-22, and to measure interference with type I and II topoisomerases. Their biological profile was also inspected in vitro on the HL-60 cell line using different flow cytometric techniques (cell cycle distribution, detection of mitochondrial membrane potential dissipation, and analysis of metabolic activity/viability). The compounds exhibited a profound inhibitory effect on topoisomerase activity (e.g. compound 22 inhibited type I topoisomerase at 1 µM concentration). The treatment of HL-60 cells with the studied compounds showed inhibition of cell growth especially with hybrids containing thiourea (14-17) and urea moieties (21 and 22). Moreover, treatment of human dermal fibroblasts with the studied compounds did not indicate significant cytotoxicity. The observed results suggest beneficial selectivity of the heterodimers as potential drugs to target cancer cells.
- Keywords
- 7-MEOTA-tacrine heterodimers, HL-60, calf thymus DNA, human dermal fibroblasts, topoisomerases,
- MeSH
- Acridines chemical synthesis chemistry pharmacology MeSH
- A549 Cells MeSH
- Fibroblasts drug effects MeSH
- HL-60 Cells MeSH
- Humans MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents chemical synthesis chemistry pharmacology MeSH
- Drug Screening Assays, Antitumor MeSH
- Tacrine chemistry pharmacology MeSH
- Thiourea chemistry pharmacology MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 7-methoxy-1,2,3,4-tetrahydroacridin-9-amine MeSH Browser
- Acridines MeSH
- Antineoplastic Agents MeSH
- Tacrine MeSH
- Thiourea MeSH
Twelve derivatives 1a-1m of the β-crinane-type alkaloid haemanthamine were developed. All the semisynthetic derivatives were studied for their inhibitory potential against both acetylcholinesterase and butyrylcholinesterase. In addition, glycogen synthase kinase 3β (GSK-3β) inhibition potency was evaluated in the active derivatives. In order to reveal the availability of the drugs to the CNS, we elucidated the potential of selected derivatives to penetrate through the blood-brain barrier (BBB). Two compounds, namely 11-O-(2-methylbenzoyl)-haemanthamine (1j) and 11-O-(4-nitrobenzoyl)-haemanthamine (1m), revealed the most intriguing profile, both being acetylcholinesterase (hAChE) inhibitors on a micromolar scale, with GSK-3β inhibition properties, and predicted permeation through the BBB. In vitro data were further corroborated by detailed inspection of the compounds' plausible binding modes in the active sites of hAChE and hBuChE, which led us to provide the structural determinants responsible for the activity towards these enzymes.
- Keywords
- Alzheimer’s disease, Amaryllidaceae, acetylcholinesterase, butyrylcholinesterase, docking studies, glycogen synthase kinase-3β inhibition, haemanthamine,
- MeSH
- Amaryllidaceae Alkaloids chemistry metabolism MeSH
- Alzheimer Disease metabolism MeSH
- Amaryllidaceae chemistry metabolism MeSH
- Phenanthridines chemistry metabolism MeSH
- Blood-Brain Barrier metabolism MeSH
- Glycogen Synthase Kinase 3 beta metabolism MeSH
- Humans MeSH
- Ligands MeSH
- Molecular Conformation MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Permeability MeSH
- Molecular Docking Simulation MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amaryllidaceae Alkaloids MeSH
- Phenanthridines MeSH
- hemanthamine MeSH Browser
- Glycogen Synthase Kinase 3 beta MeSH
- Ligands MeSH
Tacrine (THA), the first clinically effective acetylcholinesterase (AChE) inhibitor and the first approved drug for the treatment of Alzheimer's disease (AD), was withdrawn from the market due to its side effects, particularly its hepatotoxicity. Nowadays, THA serves as a valuable scaffold for the design of novel agents potentially applicable for AD treatment. One such compound, namely 7-methoxytacrine (7-MEOTA), exhibits an intriguing profile, having suppressed hepatotoxicity and concomitantly retaining AChE inhibition properties. Another interesting class of AChE inhibitors represents Huprines, designed by merging two fragments of the known AChE inhibitors-THA and (-)-huperzine A. Several members of this compound family are more potent human AChE inhibitors than the parent compounds. The most promising are so-called huprines X and Y. Here, we report the design, synthesis, biological evaluation, and in silico studies of 2-methoxyhuprine that amalgamates structural features of 7-MEOTA and huprine Y in one molecule.
- Keywords
- 2-methoxyhuprine, 7-MEOTA, Alzheimer’s disease, acetylcholinesterase, butyrylcholinesterase, huprine Y, tacrine,
- MeSH
- Acetylcholinesterase MeSH
- Enzyme Activation drug effects MeSH
- Alzheimer Disease drug therapy MeSH
- Aminoquinolines chemical synthesis chemistry pharmacology MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors chemistry pharmacology MeSH
- Blood-Brain Barrier metabolism MeSH
- Heterocyclic Compounds, 4 or More Rings chemistry pharmacology MeSH
- Hydrolysis MeSH
- Inhibitory Concentration 50 MeSH
- Catalytic Domain MeSH
- Humans MeSH
- Molecular Conformation MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Cell Line, Tumor MeSH
- Drug Discovery * MeSH
- Permeability MeSH
- Drug Design MeSH
- Tacrine analogs & derivatives chemistry pharmacology MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Cell Survival drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 7-methoxytacrine MeSH Browser
- Acetylcholinesterase MeSH
- Aminoquinolines MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Heterocyclic Compounds, 4 or More Rings MeSH
- huprine Y MeSH Browser
- Tacrine MeSH
A novel series of 6-chlorotacrine-scutellarin hybrids was designed, synthesized and the biological activity as potential anti-Alzheimer's agents was assessed. Their inhibitory activity towards human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE), antioxidant activity, ability to cross the blood-brain barrier (BBB) and hepatotoxic profile were evaluated in vitro. Among these compounds, hybrid K1383, bearing two methylene tether between two basic scaffolds, was found to be very potent hAChE inhibitor (IC50 = 1.63 nM). Unfortunately, none of the hybrids displayed any antioxidant activity (EC50 ≥ 500 μM). Preliminary data also suggests a comparable hepatotoxic profile with 6-Cl-THA (established on a HepG2 cell line). Kinetic studies performed on hAChE with the most active compound in the study, K1383, pointed out to a mixed, non-competitive enzyme inhibition. These findings were further corroborated by docking studies.
- Keywords
- 6-chlorotacrine, Alzheimer’s disease, acetylcholinesterase, butyrylcholinesterase, enzyme inhibitor, scutellarin,
- MeSH
- Acetylcholinesterase metabolism MeSH
- Enzyme Activation drug effects MeSH
- Alzheimer Disease enzymology MeSH
- Apigenin chemistry MeSH
- Butyrylcholinesterase metabolism MeSH
- Cholinesterase Inhibitors chemical synthesis chemistry pharmacology MeSH
- Glucuronates chemistry MeSH
- Blood-Brain Barrier metabolism MeSH
- Humans MeSH
- Drug Design MeSH
- Molecular Docking Simulation MeSH
- Tacrine analogs & derivatives chemistry MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 6-chlorotacrine MeSH Browser
- Acetylcholinesterase MeSH
- Apigenin MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Glucuronates MeSH
- scutellarin MeSH Browser
- Tacrine MeSH
Chemical warfare agents constitute an increasing threat to both military and civilian populations. Therefore, effective prophylactic approaches are urgently needed. Herein, we present a novel hybrid compound which is able not only to keep acetylcholinesterase resistant to organophosphate (OP) inhibitors, but also to serve as an enzyme reactivator in the case of OP intoxication.
- Publication type
- Journal Article MeSH
Alzheimer's disease (AD) is a debilitating progressive neurodegenerative disorder that ultimately leads to the patient's death. Despite the fact that novel pharmacological approaches endeavoring to block the neurodegenerative process are still emerging, none of them have reached use in clinical practice yet. Thus, palliative treatment represented by acetylcholinesterase inhibitors (AChEIs) and memantine are still the only therapeutics used. Following the multi-target directed ligands (MTDLs) strategy, herein we describe the synthesis, biological evaluation and docking studies for novel 7-methoxytacrine-p-anisidine hybrids designed to purposely target both cholinesterases and the amyloid cascade. Indeed, the novel derivatives proved to be effective non-specific cholinesterase inhibitors showing non-competitive AChE inhibition patterns. This compounds' behavior was confirmed in the subsequent molecular modeling studies.
- Keywords
- 7-methoxy-tacrine, Alzheimer’s disease, MTDLs, acetylcholinesterase, butyrylcholinesterase, tacrine,
- MeSH
- Acetylcholinesterase chemistry MeSH
- Amyloid beta-Peptides antagonists & inhibitors chemistry MeSH
- Aniline Compounds chemical synthesis chemistry MeSH
- Cholinesterase Inhibitors chemical synthesis chemistry MeSH
- Kinetics MeSH
- Central Nervous System Agents chemical synthesis chemistry MeSH
- Humans MeSH
- Recombinant Proteins chemistry MeSH
- Molecular Docking Simulation MeSH
- Tacrine analogs & derivatives MeSH
- Binding Sites MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Amyloid beta-Peptides MeSH
- Aniline Compounds MeSH
- Cholinesterase Inhibitors MeSH
- Central Nervous System Agents MeSH
- Recombinant Proteins MeSH
- Tacrine MeSH