Most cited article - PubMed ID 25040552
Cytosolic iron-sulphur protein assembly is functionally conserved and essential in procyclic and bloodstream Trypanosoma brucei
The oxymonad Monocercomonoides exilis was recently reported to be the first eukaryote that has completely lost the mitochondrial compartment. It was proposed that an important prerequisite for such a radical evolutionary step was the acquisition of the SUF Fe-S cluster assembly pathway from prokaryotes, making the mitochondrial ISC pathway dispensable. We have investigated genomic and transcriptomic data from six oxymonad species and their relatives, composing the group Preaxostyla (Metamonada, Excavata), for the presence and absence of enzymes involved in Fe-S cluster biosynthesis. None possesses enzymes of mitochondrial ISC pathway and all apparently possess the SUF pathway, composed of SufB, C, D, S, and U proteins, altogether suggesting that the transition from ISC to SUF preceded their last common ancestor. Interestingly, we observed that SufDSU were fused in all three oxymonad genomes, and in the genome of Paratrimastix pyriformis. The donor of the SUF genes is not clear from phylogenetic analyses, but the enzyme composition of the pathway and the presence of SufDSU fusion suggests Firmicutes, Thermotogae, Spirochaetes, Proteobacteria, or Chloroflexi as donors. The inventory of the downstream CIA pathway enzymes is consistent with that of closely related species that retain ISC, indicating that the switch from ISC to SUF did not markedly affect the downstream process of maturation of cytosolic and nuclear Fe-S proteins.
- MeSH
- Phylogeny MeSH
- Genome, Protozoan * MeSH
- Evolution, Molecular * MeSH
- Oxymonadida genetics metabolism MeSH
- Iron-Sulfur Proteins genetics MeSH
- Transcriptome MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Iron-Sulfur Proteins MeSH
Fe-S clusters are ubiquitous cofactors of proteins involved in a variety of essential cellular processes. The biogenesis of Fe-S clusters in the cytosol and their insertion into proteins is accomplished through the cytosolic iron-sulphur protein assembly (CIA) machinery. The early- and middle-acting modules of the CIA pathway concerned with the assembly and trafficking of Fe-S clusters have been previously characterised in the parasitic protist Trypanosoma brucei. In this study, we applied proteomic and genetic approaches to gain insights into the network of protein-protein interactions of the late-acting CIA targeting complex in T. brucei. All components of the canonical CIA machinery are present in T. brucei including, as in humans, two distinct CIA2 homologues TbCIA2A and TbCIA2B. These two proteins are found interacting with TbCIA1, yet the interaction is mutually exclusive, as determined by mass spectrometry. Ablation of most of the components of the CIA targeting complex by RNAi led to impaired cell growth in vitro, with the exception of TbCIA2A in procyclic form (PCF) trypanosomes. Depletion of the CIA-targeting complex was accompanied by reduced levels of protein-bound cytosolic iron and decreased activity of an Fe-S dependent enzyme in PCF trypanosomes. We demonstrate that the C-terminal domain of TbMMS19 acts as a docking site for TbCIA2B and TbCIA1, forming a trimeric complex that also interacts with target Fe-S apo-proteins and the middle-acting CIA component TbNAR1.
- MeSH
- Cytosol metabolism MeSH
- Protein Interaction Domains and Motifs MeSH
- Protein Conformation MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Iron-Sulfur Proteins chemistry metabolism MeSH
- Protozoan Proteins chemistry metabolism MeSH
- Trypanosoma brucei brucei growth & development metabolism MeSH
- Trypanosomiasis metabolism parasitology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Iron-Sulfur Proteins MeSH
- Protozoan Proteins MeSH
The majority of established model organisms belong to the supergroup Opisthokonta, which includes yeasts and animals. While enlightening, this focus has neglected protists, organisms that represent the bulk of eukaryotic diversity and are often regarded as primitive eukaryotes. One of these is the "supergroup" Excavata, which comprises unicellular flagellates of diverse lifestyles and contains species of medical importance, such as Trichomonas, Giardia, Naegleria, Trypanosoma and Leishmania. Excavata exhibits a continuum in mitochondrial forms, ranging from classical aerobic, cristae-bearing mitochondria to mitochondria-related organelles, such as hydrogenosomes and mitosomes, to the extreme case of a complete absence of the organelle. All forms of mitochondria house a machinery for the assembly of Fe-S clusters, ancient cofactors required in various biochemical activities needed to sustain every extant cell. In this review, we survey what is known about the Fe-S cluster assembly in the supergroup Excavata. We aim to bring attention to the diversity found in this group, reflected in gene losses and gains that have shaped the Fe-S cluster biogenesis pathways.
- Keywords
- Evolution, Excavata, Fe–S cluster, Mitochondria,
- MeSH
- Eukaryota cytology metabolism MeSH
- Mitochondria metabolism MeSH
- Iron-Sulfur Proteins metabolism MeSH
- Iron metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Iron-Sulfur Proteins MeSH
- Iron MeSH
UNLABELLED: Mitochondrial chaperones have multiple functions that are essential for proper functioning of mitochondria. In the human-pathogenic protist Trypanosoma brucei, we demonstrate a novel function of the highly conserved machinery composed of mitochondrial heat shock proteins 70 and 40 (mtHsp70/mtHsp40) and the ATP exchange factor Mge1. The mitochondrial DNA of T. brucei, also known as kinetoplast DNA (kDNA), is represented by a single catenated network composed of thousands of minicircles and dozens of maxicircles packed into an electron-dense kDNA disk. The chaperones mtHsp70 and mtHsp40 and their cofactor Mge1 are uniformly distributed throughout the single mitochondrial network and are all essential for the parasite. Following RNA interference (RNAi)-mediated depletion of each of these proteins, the kDNA network shrinks and eventually disappears. Ultrastructural analysis of cells depleted for mtHsp70 or mtHsp40 revealed that the otherwise compact kDNA network becomes severely compromised, a consequence of decreased maxicircle and minicircle copy numbers. Moreover, we show that the replication of minicircles is impaired, although the lack of these proteins has a bigger impact on the less abundant maxicircles. We provide additional evidence that these chaperones are indispensable for the maintenance and replication of kDNA, in addition to their already known functions in Fe-S cluster synthesis and protein import. IMPORTANCE: Impairment or loss of mitochondrial DNA is associated with mitochondrial dysfunction and a wide range of neural, muscular, and other diseases. We present the first evidence showing that the entire mtHsp70/mtHsp40 machinery plays an important role in mitochondrial DNA replication and maintenance, a function likely retained from prokaryotes. These abundant, ubiquitous, and multifunctional chaperones share phenotypes with enzymes engaged in the initial stages of replication of the mitochondrial DNA in T. brucei.
- MeSH
- DNA, Kinetoplast genetics metabolism MeSH
- Humans MeSH
- DNA, Mitochondrial genetics metabolism MeSH
- Mitochondria genetics metabolism MeSH
- HSP40 Heat-Shock Proteins genetics metabolism MeSH
- HSP70 Heat-Shock Proteins genetics metabolism MeSH
- Protozoan Proteins genetics metabolism MeSH
- DNA Replication * MeSH
- Trypanosoma brucei brucei genetics metabolism MeSH
- Trypanosomiasis, African parasitology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- DNA, Kinetoplast MeSH
- DNA, Mitochondrial MeSH
- HSP40 Heat-Shock Proteins MeSH
- HSP70 Heat-Shock Proteins MeSH
- Protozoan Proteins MeSH