Nejvíce citovaný článek - PubMed ID 25060824
Accumulation of the Type IV prepilin triggers degradation of SecY and YidC and inhibits synthesis of Photosystem II proteins in the cyanobacterium Synechocystis PCC 6803
FtsH proteases (FtsHs) belong to intramembrane ATP-dependent metalloproteases which are widely distributed in eubacteria, mitochondria and chloroplasts. The best-studied roles of FtsH in Escherichia coli include quality control of membrane proteins, regulation of response to heat shock, superoxide stress and viral infection, and control of lipopolysaccharide biosynthesis. While heterotrophic bacteria mostly contain a single indispensable FtsH complex, photosynthetic cyanobacteria usually contain three FtsH complexes: two heterocomplexes and one homocomplex. The essential cytoplasmic FtsH1/3 most probably fulfills a role similar to other bacterial FtsHs, whereas the thylakoid FtsH2/3 heterocomplex and FtsH4 homocomplex appear to maintain the photosynthetic apparatus of cyanobacteria and optimize its functionality. Moreover, recent studies suggest the involvement of all FtsH proteases in a complex response to nutrient stresses. In this review, we aim to comprehensively evaluate the functions of the cyanobacterial FtsHs specifically under stress conditions with emphasis on nutrient deficiency and high irradiance. We also point to various unresolved issues concerning FtsH functions, which deserve further attention.
- Klíčová slova
- Cyanobacteria, FtsH, Nutrient stress, Photodamage, Photosystem,
- MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- fyziologický stres * MeSH
- proteasy závislé na ATP metabolismus genetika MeSH
- sinice * metabolismus fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- proteasy závislé na ATP MeSH
Type IV pili are bacterial surface-exposed filaments that are built up by small monomers called pilin proteins. Pilins are synthesized as longer precursors (prepilins), the N-terminal signal peptide of which must be removed by the processing protease PilD. A mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking the PilD protease is not capable of photoautotrophic growth because of the impaired function of Sec translocons. Here, we isolated phototrophic suppressor strains of the original ΔpilD mutant and, by sequencing their genomes, identified secondary mutations in the SigF sigma factor, the γ subunit of RNA polymerase, the signal peptide of major pilin PilA1, and in the pilA1-pilA2 intergenic region. Characterization of suppressor strains suggests that, rather than the total prepilin level in the cell, the presence of non-glycosylated PilA1 prepilin is specifically harmful. We propose that the restricted lateral mobility of the non-glycosylated PilA1 prepilin causes its accumulation in the translocon-rich membrane domains, which attenuates the synthesis of membrane proteins.
- Klíčová slova
- PilD peptidase, Synechocystis, Type IV pili, photosystem II, suppressor mutations,
- Publikační typ
- časopisecké články MeSH
The membrane-embedded FtsH proteases found in bacteria, chloroplasts, and mitochondria are involved in diverse cellular processes including protein quality control and regulation. The genome of the model cyanobacterium Synechocystis sp PCC 6803 encodes four FtsH homologs designated FtsH1 to FtsH4. The FtsH3 homolog is present in two hetero-oligomeric complexes: FtsH2/3, which is responsible for photosystem II quality control, and the essential FtsH1/3 complex, which helps maintain Fe homeostasis by regulating the level of the transcription factor Fur. To gain a more comprehensive insight into the physiological roles of FtsH hetero-complexes, we performed genome-wide expression profiling and global proteomic analyses of Synechocystis mutants conditionally depleted of FtsH3 or FtsH1 grown under various nutrient conditions. We show that the lack of FtsH1/3 leads to a drastic reduction in the transcriptional response to nutrient stress of not only Fur but also the Pho, NdhR, and NtcA regulons. In addition, this effect is accompanied by the accumulation of the respective transcription factors. Thus, the FtsH1/3 complex is of critical importance for acclimation to iron, phosphate, carbon, and nitrogen starvation in Synechocystis.plantcell;31/12/2912/FX1F1fx1.
- MeSH
- aklimatizace genetika MeSH
- bakteriální proteiny genetika metabolismus MeSH
- dusík nedostatek metabolismus MeSH
- exprese genu MeSH
- fosfáty nedostatek metabolismus MeSH
- fosforylace MeSH
- fotosystém II - proteinový komplex chemie genetika metabolismus MeSH
- metaloproteasy genetika metabolismus MeSH
- mutace MeSH
- proteiny vázající fosfáty genetika metabolismus MeSH
- proteolýza MeSH
- proteom genetika metabolismus MeSH
- proteomika MeSH
- regulace genové exprese u bakterií genetika MeSH
- regulon genetika MeSH
- represorové proteiny genetika metabolismus MeSH
- ribozomální proteiny genetika metabolismus MeSH
- Synechocystis enzymologie metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- uhlík nedostatek metabolismus MeSH
- živiny nedostatek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- dusík MeSH
- ferric uptake regulating proteins, bacterial MeSH Prohlížeč
- fosfáty MeSH
- fotosystém II - proteinový komplex MeSH
- metaloproteasy MeSH
- proteiny vázající fosfáty MeSH
- proteom MeSH
- represorové proteiny MeSH
- ribozomální proteiny MeSH
- transkripční faktory MeSH
- uhlík MeSH
Photosystem II (PSII) is a large enzyme complex embedded in the thylakoid membrane of oxygenic phototrophs. The biogenesis of PSII requires the assembly of more than 30 subunits, with the assistance of a number of auxiliary proteins. In plants and cyanobacteria, the photosynthesis-affected mutant 68 (Pam68) is important for PSII assembly. However, its mechanisms of action remain unknown. Using a Synechocystis PCC 6803 strain expressing Flag-tagged Pam68, we purified a large protein complex containing ribosomes, SecY translocase, and the chlorophyll-binding PSII inner antenna CP47. Using 2D gel electrophoresis, we identified a pigmented Pam68-CP47 subcomplex and found Pam68 bound to ribosomes. Our results show that Pam68 binds to ribosomes even in the absence of CP47 translation. Furthermore, Pam68 associates with CP47 at an early phase of its biogenesis and promotes the synthesis of this chlorophyll-binding polypeptide until the attachment of the small PSII subunit PsbH. Deletion of both Pam68 and PsbH nearly abolishes the synthesis of CP47, which can be restored by enhancing chlorophyll biosynthesis. These results strongly suggest that ribosome-bound Pam68 stabilizes membrane segments of CP47 and facilitates the insertion of chlorophyll molecules into the translated CP47 polypeptide chain.
- MeSH
- 2D gelová elektroforéza MeSH
- bakteriální proteiny genetika metabolismus MeSH
- buněčná membrána metabolismus MeSH
- chlorofyl metabolismus MeSH
- fosfoproteiny genetika metabolismus MeSH
- fotosystém II - proteinový komplex genetika metabolismus MeSH
- mutace MeSH
- ribozomy metabolismus MeSH
- světlosběrné proteinové komplexy genetika metabolismus MeSH
- Synechocystis genetika metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- chlorofyl MeSH
- fosfoproteiny MeSH
- fotosystém II - proteinový komplex MeSH
- photosystem II, chlorophyll-binding protein, CP-47 MeSH Prohlížeč
- photosystem II, psbH subunit MeSH Prohlížeč
- světlosběrné proteinové komplexy MeSH
The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsA mutant of Synechocystis sp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of ΔpgsA mutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- chlorofyl biosyntéza metabolismus MeSH
- chlorofylidy metabolismus MeSH
- fosfatidylglyceroly genetika metabolismus MeSH
- fotosystém I - proteinový komplex metabolismus MeSH
- ligasy tvořící vazby C-O metabolismus MeSH
- protochlorofylid metabolismus MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Synechocystis genetika metabolismus MeSH
- transferasy pro jiné substituované fosfátové skupiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase MeSH Prohlížeč
- chlorofyl MeSH
- chlorofylidy MeSH
- chlorophyll A binding protein CP43, Cyanobacteria MeSH Prohlížeč
- chlorophyll synthetase MeSH Prohlížeč
- fosfatidylglyceroly MeSH
- fotosystém I - proteinový komplex MeSH
- ligasy tvořící vazby C-O MeSH
- protochlorofylid MeSH
- světlosběrné proteinové komplexy MeSH
- transferasy pro jiné substituované fosfátové skupiny MeSH