Nejvíce citovaný článek - PubMed ID 10940391
FtsH proteases (FtsHs) belong to intramembrane ATP-dependent metalloproteases which are widely distributed in eubacteria, mitochondria and chloroplasts. The best-studied roles of FtsH in Escherichia coli include quality control of membrane proteins, regulation of response to heat shock, superoxide stress and viral infection, and control of lipopolysaccharide biosynthesis. While heterotrophic bacteria mostly contain a single indispensable FtsH complex, photosynthetic cyanobacteria usually contain three FtsH complexes: two heterocomplexes and one homocomplex. The essential cytoplasmic FtsH1/3 most probably fulfills a role similar to other bacterial FtsHs, whereas the thylakoid FtsH2/3 heterocomplex and FtsH4 homocomplex appear to maintain the photosynthetic apparatus of cyanobacteria and optimize its functionality. Moreover, recent studies suggest the involvement of all FtsH proteases in a complex response to nutrient stresses. In this review, we aim to comprehensively evaluate the functions of the cyanobacterial FtsHs specifically under stress conditions with emphasis on nutrient deficiency and high irradiance. We also point to various unresolved issues concerning FtsH functions, which deserve further attention.
- Klíčová slova
- Cyanobacteria, FtsH, Nutrient stress, Photodamage, Photosystem,
- MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- fyziologický stres * MeSH
- proteasy závislé na ATP metabolismus genetika MeSH
- sinice * metabolismus fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- proteasy závislé na ATP MeSH
Prochlorococcus marinus, the smallest picocyanobacterium, comprises multiple clades occupying distinct niches, currently across tropical and sub-tropical oligotrophic ocean regions, including Oxygen Minimum Zones. Ocean warming may open growth-permissive temperatures in new, poleward photic regimes, along with expanded Oxygen Minimum Zones. We used ocean metaproteomic data on current Prochlorococcus marinus niches, to guide testing of Prochlorococcus marinus growth across a matrix of peak irradiances, photoperiods, spectral bands and dissolved oxygen. MED4 from Clade HLI requires greater than 4 h photoperiod, grows at 25 μmol O2 L-1 and above, and exploits high cumulative diel photon doses. MED4, however, relies upon an alternative oxidase to balance electron transport, which may exclude it from growth under our lowest, 2.5 μmol O2 L-1, condition. SS120 from clade LLII/III is restricted to low light under full 250 μmol O2 L-1, shows expanded light exploitation under 25 μmol O2 L-1, but is excluded from growth under 2.5 μmol O2 L-1. Intermediate oxygen suppresses the cost of PSII photoinactivation, and possibly the enzymatic production of H2O2 in SS120, which has limitations on genomic capacity for PSII and DNA repair. MIT9313 from Clade LLIV is restricted to low blue irradiance under 250 μmol O2 L-1, but exploits much higher irradiance under red light, or under lower O2 concentrations, conditions which slow photoinactivation of PSII and production of reactive oxygen species. In warming oceans, range expansions and competition among clades will be governed not only by light levels. Short photoperiods governed by latitude, temperate winters, and depth attenuation of light, will exclude clade HLI (including MED4) from some habitats. In contrast, clade LLII/III (including SS120), and particularly clade LLIV (including MIT9313), may exploit higher light niches nearer the surface, under expanding OMZ conditions, where low O2 relieves the stresses of oxidation stress and PSII photoinhibition.
- MeSH
- fotoperioda MeSH
- kyslík * metabolismus MeSH
- mořská voda mikrobiologie chemie MeSH
- Prochlorococcus * metabolismus genetika růst a vývoj účinky záření MeSH
- světlo * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyslík * MeSH
FtsH proteases are membrane-embedded proteolytic complexes important for protein quality control and regulation of various physiological processes in bacteria, mitochondria, and chloroplasts. Like most cyanobacteria, the model species Synechocystis sp. PCC 6803 contains four FtsH homologs, FtsH1-FtsH4. FtsH1-FtsH3 form two hetero-oligomeric complexes, FtsH1/3 and FtsH2/3, which play a pivotal role in acclimation to nutrient deficiency and photosystem II quality control, respectively. FtsH4 differs from the other three homologs by the formation of a homo-oligomeric complex, and together with Arabidopsis thaliana AtFtsH7/9 orthologs, it has been assigned to another phylogenetic group of unknown function. Our results exclude the possibility that Synechocystis FtsH4 structurally or functionally substitutes for the missing or non-functional FtsH2 subunit in the FtsH2/3 complex. Instead, we demonstrate that FtsH4 is involved in the biogenesis of photosystem II by dual regulation of high light-inducible proteins (Hlips). FtsH4 positively regulates expression of Hlips shortly after high light exposure but is also responsible for Hlip removal under conditions when their elevated levels are no longer needed. We provide experimental support for Hlips as proteolytic substrates of FtsH4. Fluorescent labeling of FtsH4 enabled us to assess its localization using advanced microscopic techniques. Results show that FtsH4 complexes are concentrated in well-defined membrane regions at the inner and outer periphery of the thylakoid system. Based on the identification of proteins that co-purified with the tagged FtsH4, we speculate that FtsH4 concentrates in special compartments in which the biogenesis of photosynthetic complexes takes place.
- Klíčová slova
- FtsH4, high light-inducible protein, photosystem II biogenesis, proteolysis, thylakoid,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- chloroplasty metabolismus MeSH
- fotosystém II (proteinový komplex) genetika metabolismus MeSH
- fylogeneze MeSH
- metaloproteasy genetika metabolismus MeSH
- proteasy MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- Synechocystis * genetika metabolismus MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém II (proteinový komplex) MeSH
- FtsH4 protein, Arabidopsis MeSH Prohlížeč
- metaloproteasy MeSH
- proteasy MeSH
- proteiny huseníčku * MeSH
The membrane-embedded FtsH proteases found in bacteria, chloroplasts, and mitochondria are involved in diverse cellular processes including protein quality control and regulation. The genome of the model cyanobacterium Synechocystis sp PCC 6803 encodes four FtsH homologs designated FtsH1 to FtsH4. The FtsH3 homolog is present in two hetero-oligomeric complexes: FtsH2/3, which is responsible for photosystem II quality control, and the essential FtsH1/3 complex, which helps maintain Fe homeostasis by regulating the level of the transcription factor Fur. To gain a more comprehensive insight into the physiological roles of FtsH hetero-complexes, we performed genome-wide expression profiling and global proteomic analyses of Synechocystis mutants conditionally depleted of FtsH3 or FtsH1 grown under various nutrient conditions. We show that the lack of FtsH1/3 leads to a drastic reduction in the transcriptional response to nutrient stress of not only Fur but also the Pho, NdhR, and NtcA regulons. In addition, this effect is accompanied by the accumulation of the respective transcription factors. Thus, the FtsH1/3 complex is of critical importance for acclimation to iron, phosphate, carbon, and nitrogen starvation in Synechocystis.plantcell;31/12/2912/FX1F1fx1.
- MeSH
- aklimatizace genetika MeSH
- bakteriální proteiny genetika metabolismus MeSH
- dusík nedostatek metabolismus MeSH
- exprese genu MeSH
- fosfáty nedostatek metabolismus MeSH
- fosforylace MeSH
- fotosystém II (proteinový komplex) chemie genetika metabolismus MeSH
- metaloproteasy genetika metabolismus MeSH
- mutace MeSH
- proteiny vázající fosfáty genetika metabolismus MeSH
- proteolýza MeSH
- proteom genetika metabolismus MeSH
- proteomika MeSH
- regulace genové exprese u bakterií genetika MeSH
- regulon genetika MeSH
- represorové proteiny genetika metabolismus MeSH
- ribozomální proteiny genetika metabolismus MeSH
- Synechocystis enzymologie metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- uhlík nedostatek metabolismus MeSH
- živiny nedostatek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- dusík MeSH
- ferric uptake regulating proteins, bacterial MeSH Prohlížeč
- fosfáty MeSH
- fotosystém II (proteinový komplex) MeSH
- metaloproteasy MeSH
- proteiny vázající fosfáty MeSH
- proteom MeSH
- represorové proteiny MeSH
- ribozomální proteiny MeSH
- transkripční faktory MeSH
- uhlík MeSH
Protoporphyrinogen IX oxidase (PPO), the last enzyme that is common to both chlorophyll and heme biosynthesis pathways, catalyzes the oxidation of protoporphyrinogen IX to protoporphyrin IX. PPO has several isoforms, including the oxygen-dependent HemY and an oxygen-independent enzyme, HemG. However, most cyanobacteria encode HemJ, the least characterized PPO form. We have characterized HemJ from the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) as a bona fide PPO; HemJ down-regulation resulted in accumulation of tetrapyrrole precursors and in the depletion of chlorophyll precursors. The expression of FLAG-tagged Synechocystis 6803 HemJ protein (HemJ.f) and affinity isolation of HemJ.f under native conditions revealed that it binds heme b The most stable HemJ.f form was a dimer, and higher oligomeric forms were also observed. Using both oxygen and artificial electron acceptors, we detected no enzymatic activity with the purified HemJ.f, consistent with the hypothesis that the enzymatic mechanism for HemJ is distinct from those of other PPO isoforms. The heme absorption spectra and distant HemJ homology to several membrane oxidases indicated that the heme in HemJ is redox-active and involved in electron transfer. HemJ was conditionally complemented by another PPO, HemG from Escherichia coli. If grown photoautotrophically, the complemented strain accumulated tripropionic tetrapyrrole harderoporphyrin, suggesting a defect in enzymatic conversion of coproporphyrinogen III to protoporphyrinogen IX, catalyzed by coproporphyrinogen III oxidase (CPO). This observation supports the hypothesis that HemJ is functionally coupled with CPO and that this coupling is disrupted after replacement of HemJ by HemG.
- Klíčová slova
- HemJ, Synechocystis sp. PCC 6803, coproporphyrinogen III oxidase, cyanobacteria, enzyme purification, heme, membrane protein, photosynthesis, protoporphyrinogen IX oxidase,
- MeSH
- hem chemie metabolismus MeSH
- koproporfyrinogenoxidasa chemie metabolismus MeSH
- molekulární modely MeSH
- oxidace-redukce MeSH
- protoporfyrinogenoxidasa chemie metabolismus MeSH
- Synechocystis enzymologie MeSH
- tetrapyrroly chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hem MeSH
- koproporfyrinogenoxidasa MeSH
- protoporfyrinogenoxidasa MeSH
- tetrapyrroly MeSH
One strategy for enhancing photosynthesis in crop plants is to improve their ability to repair photosystem II (PSII) in response to irreversible damage by light. Despite the pivotal role of thylakoid-embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH expression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His-tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero-oligomeric complex involved in PSII repair. We show using X-ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C-terminal helix and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in FtsH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen infection. Downregulating FtsH function and the PSII repair cycle via THF1 would contribute to the production of reactive oxygen species, the loss of chloroplast function and cell death.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
- Klíčová slova
- D1 subunit, Synechocystis, hypersensitive response, photoinhibition, thylakoid formation 1 gene, thylakoid membrane,
- MeSH
- Arabidopsis genetika fyziologie MeSH
- bakteriální proteiny genetika metabolismus MeSH
- chloroplasty metabolismus MeSH
- fotosyntéza * MeSH
- fotosystém II (proteinový komplex) genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- sinice genetika fyziologie MeSH
- Synechocystis genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fotosystém II (proteinový komplex) MeSH
- proteiny huseníčku MeSH
The selective replacement of photodamaged D1 protein within the multisubunit photosystem II (PSII) complex is an important photoprotective mechanism in chloroplasts and cyanobacteria. FtsH proteases are involved at an early stage of D1 degradation, but it remains unclear how the damaged D1 subunit is recognized, degraded, and replaced. To test the role of the N-terminal region of D1 in PSII biogenesis and repair, we have constructed mutants of the cyanobacterium Synechocystis sp PCC 6803 that are truncated at the exposed N terminus. Removal of 5 or 10 residues blocked D1 synthesis, as assessed in radiolabeling experiments, whereas removal of 20 residues restored the ability to assemble oxygen-evolving dimeric PSII complexes but inhibited PSII repair at the level of D1 degradation. Overall, our results identify an important physiological role for the exposed N-terminal tail of D1 at an early step in selective D1 degradation. This finding has important implications for the recognition of damaged D1 and its synchronized replacement by a newly synthesized subunit.
- MeSH
- autotrofní procesy účinky léků účinky záření MeSH
- biologické modely MeSH
- dimerizace MeSH
- fluorescenční spektrometrie MeSH
- fotosystém II (proteinový komplex) chemie metabolismus MeSH
- linkomycin farmakologie MeSH
- molekulární sekvence - údaje MeSH
- mutace genetika MeSH
- mutantní proteiny metabolismus MeSH
- podjednotky proteinů chemie metabolismus MeSH
- posttranslační úpravy proteinů * účinky léků účinky záření MeSH
- sekundární struktura proteinů MeSH
- sekvence aminokyselin MeSH
- světlo MeSH
- Synechocystis cytologie účinky léků metabolismus účinky záření MeSH
- tylakoidy účinky léků metabolismus účinky záření MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém II (proteinový komplex) MeSH
- linkomycin MeSH
- mutantní proteiny MeSH
- podjednotky proteinů MeSH