Nejvíce citovaný článek - PubMed ID 25308614
Neonatal hyperbilirubinemia or jaundice is associated with kernicterus, resulting in permanent neurological damage or even death. Conventional phototherapy does not prevent hyperbilirubinemia or eliminate the need for exchange transfusion. Here we investigated the potential of therapeutic bile acids ursodeoxycholic acid (UDCA) and obeticholic acid (OCA, 6-α-ethyl-CDCA), a farnesoid-X-receptor (FXR) agonist, as preventive treatment options for neonatal hyperbilirubinemia using the hUGT1*1 humanized mice and Ugt1a-deficient Gunn rats. Treatment of hUGT1*1 mice with UDCA or OCA at postnatal days 10-14 effectively decreased bilirubin in plasma (by 82% and 62%) and brain (by 72% and 69%), respectively. Mechanistically, our findings indicate that these effects are mediated through induction of protein levels of hUGT1A1 in the intestine, but not in liver. We further demonstrate that in Ugt1a-deficient Gunn rats, UDCA but not OCA significantly decreases plasma bilirubin, indicating that at least some of the hypobilirubinemic effects of UDCA are independent of UGT1A1. Finally, using the synthetic, non-bile acid, FXR-agonist GW4064, we show that some of these effects are mediated through direct or indirect activation of FXR. Together, our study shows that therapeutic bile acids UDCA and OCA effectively reduce both plasma and brain bilirubin, highlighting their potential in the treatment of neonatal hyperbilirubinemia.
- MeSH
- bilirubin krev MeSH
- ileum účinky léků metabolismus MeSH
- isoxazoly farmakologie MeSH
- játra účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- kyselina chenodeoxycholová analogy a deriváty terapeutické užití MeSH
- kyselina ursodeoxycholová terapeutické užití MeSH
- myši MeSH
- novorozenecká hyperbilirubinemie krev farmakoterapie MeSH
- potkani Gunn MeSH
- receptory cytoplazmatické a nukleární agonisté metabolismus MeSH
- výsledek terapie MeSH
- žlučové kyseliny a soli terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bilirubin MeSH
- farnesoid X-activated receptor MeSH Prohlížeč
- GW 4064 MeSH Prohlížeč
- isoxazoly MeSH
- kyselina chenodeoxycholová MeSH
- kyselina ursodeoxycholová MeSH
- obeticholic acid MeSH Prohlížeč
- receptory cytoplazmatické a nukleární MeSH
- žlučové kyseliny a soli MeSH
For severe unconjugated hyperbilirubinemia the gold standard treatment is phototherapy with blue-green light, producing more polar photo-oxidation products, believed to be non-toxic. The aim of the present study was to compare the effects of bilirubin (BR) and lumirubin (LR), the major BR photo-oxidation product, on metabolic and oxidative stress markers. The biological activities of these pigments were investigated on several human and murine cell lines, with the focus on mitochondrial respiration, substrate metabolism, reactive oxygen species production, and the overall effects on cell viability. Compared to BR, LR was found to be much less toxic, while still maintaining a similar antioxidant capacity in the serum as well as suppressing activity leading to mitochondrial superoxide production. Nevertheless, due to its lower lipophilicity, LR was less efficient in preventing lipoperoxidation. The cytotoxicity of BR was affected by the cellular glycolytic reserve, most compromised in human hepatoblastoma HepG2 cells. The observed effects were correlated with changes in the production of tricarboxylic acid cycle metabolites. Both BR and LR modulated expression of PPARα downstream effectors involved in lipid and glucose metabolism. Proinflammatory effects of BR, evidenced by increased expression of TNFα upon exposure to bacterial lipopolysaccharide, were observed in murine macrophage-like RAW 264.7 cells. Collectively, these data point to the biological effects of BR and its photo-oxidation products, which might have clinical relevance in phototherapy-treated hyperbilirubinemic neonates and adult patients.
- Klíčová slova
- antioxidant, bilirubin, cell respiration, intracellular metabolite, lumirubin,
- Publikační typ
- časopisecké články MeSH
Although phototherapy (PT) is a standard treatment for neonatal jaundice, no validated clinical methods for determination of bilirubin phototherapy products are available. Thus, the aim of our study was to establish a such method for clinical use. To achieve this aim, a LC-MS/MS assay for simultaneous determination of Z-lumirubin (LR) and unconjugated bilirubin (UCB) was conducted. LR was purified after irradiation of UCB at 460 nm. The assay was tested on human sera from PT-treated neonates. Samples were separated on a HPLC system with a triple quadrupole mass spectrometer detector. The instrument response was linear up to 5.8 and 23.4 mg/dL for LR and UCB, respectively, with submicromolar limits of detection and validity parameters relevant for use in clinical medicine. Exposure of newborns to PT raised serum LR concentrations three-fold (p < 0.01), but the absolute concentrations were low (0.37 ± 0.16 mg/dL), despite a dramatic decrease of serum UCB concentrations (13.6 ± 2.2 vs. 10.3 ± 3.3 mg/dL, p < 0.01). A LC-MS/MS method for the simultaneous determination of LR and UCB in human serum was established and validated for clinical use. This method should help to monitor neonates on PT, as well as to improve our understanding of both the kinetics and biology of bilirubin phototherapy products.
- MeSH
- bilirubin analogy a deriváty krev chemie MeSH
- chromatografie kapalinová MeSH
- fototerapie metody MeSH
- lidé MeSH
- molekulární struktura MeSH
- novorozenec MeSH
- novorozenecká žloutenka krev terapie MeSH
- sérum chemie MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bilirubin MeSH
- lumirubin MeSH Prohlížeč
Phototherapy was introduced in the early 1950's, and is the primary treatment of severe neonatal jaundice or Crigler-Najjar syndrome. Nevertheless, the potential biological effects of the products generated from the photodegradation of bilirubin during phototherapy remain unknown. This is very relevant in light of recent clinical observations demonstrating that the use of aggressive phototherapy can increase morbidity or even mortality, in extremely low birthweight (ELBW) infants. The aim of our study was to investigate the effects of bilirubin, lumirubin (LR, its major photo-oxidative product), and BOX A and B (its monopyrrolic oxidative products) on the central nervous system (CNS) using in vitro and ex vivo experimental models. The effects of bilirubin photoproducts on cell viability and expression of selected genes were tested in human fibroblasts, three human CNS cell lines (neuroblastoma SH-SY5Y, microglial HMC3, and glioblastoma U-87 cell lines), and organotypic rat hippocampal slices. Neither bilirubin nor its photo-oxidative products affected cell viability in any of our models. In contrast, LR in biologically-relevant concentrations (25 μM) significantly increased gene expression of several pro-inflammatory genes as well as production of TNF-α in organotypic rat hippocampal slices. These findings might underlie the adverse outcomes observed in ELBW infants undergoing aggressive phototherapy.
- MeSH
- bilirubin analogy a deriváty imunologie MeSH
- buněčné linie MeSH
- fotolýza MeSH
- fototerapie škodlivé účinky MeSH
- hipokampus imunologie patologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- novorozenec MeSH
- novorozenecká žloutenka terapie MeSH
- potkani Wistar MeSH
- TNF-alfa imunologie MeSH
- viabilita buněk MeSH
- zánět imunologie patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- novorozenec MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bilirubin MeSH
- lumirubin MeSH Prohlížeč
- TNF-alfa MeSH
Although phototherapy was introduced as early as 1950's, the potential biological effects of bilirubin photoisomers (PI) generated during phototherapy remain unclear. The aim of our study was to isolate bilirubin PI in their pure forms and to assess their biological effects in vitro. The three major bilirubin PI (ZE- and EZ-bilirubin and Z-lumirubin) were prepared by photo-irradiation of unconjugated bilirubin. The individual photoproducts were chromatographically separated (TLC, HPLC), and their identities verified by mass spectrometry. The role of Z-lumirubin (the principle bilirubin PI) on the dissociation of bilirubin from albumin was tested by several methods: peroxidase, fluorescence quenching, and circular dichroism. The biological effects of major bilirubin PI (cell viability, expression of selected genes, cell cycle progression) were tested on the SH-SY5Y human neuroblastoma cell line. Lumirubin was found to have a binding site on human serum albumin, in the subdomain IB (or at a close distance to it); and thus, different from that of bilirubin. Its binding constant to albumin was much lower when compared with bilirubin, and lumirubin did not affect the level of unbound bilirubin (Bf). Compared to unconjugated bilirubin, bilirubin PI did not have any effect on either SH-SY5Y cell viability, the expression of genes involved in bilirubin metabolism or cell cycle progression, nor in modulation of the cell cycle phase. The principle bilirubin PI do not interfere with bilirubin albumin binding, and do not exert any toxic effect on human neuroblastoma cells.
- MeSH
- bilirubin chemie izolace a purifikace farmakologie MeSH
- buněčné linie MeSH
- buněčný cyklus účinky léků MeSH
- cirkulární dichroismus MeSH
- fototerapie MeSH
- hem metabolismus MeSH
- isomerie MeSH
- kinetika MeSH
- lidé MeSH
- ligandy MeSH
- regulace genové exprese účinky léků MeSH
- sérový albumin metabolismus MeSH
- spektrofotometrie ultrafialová MeSH
- světlo * MeSH
- viabilita buněk účinky léků MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bilirubin MeSH
- hem MeSH
- ligandy MeSH
- sérový albumin MeSH