Most cited article - PubMed ID 25309629
The Dalton quantum chemistry program system
The COLUMBUS program system provides the tools for performing high-level multireference (MR) computations, including the multireference configuration interaction (MRCI) method and its multireference averaged quadratic coupled cluster (MR-AQCC) extension, allowing computations on a wide range of fascinating atomic and molecular systems, including the treatment of open-shells and complicated excited state phenomena. The inclusion of spin-orbit coupling (SOC) directly within the MRCI step enables the description of systems containing heavy elements, such as lanthanides and actinides, whose properties are strongly influenced by SOC. Analytic energy gradients and nonadiabatic couplings at the correlated MRCI level provide the foundation for a variety of dynamics studies, giving insight into ultrafast photochemistry. New and ongoing method developments in COLUMBUS include the computation of spin densities, improved descriptions of ionic states, enhancements to the AQCC method, and the porting of COLUMBUS to graphical processing units (GPUs). New external interfaces enable an enhanced description of electronic resonances and molecules in strong laser fields. This work highlights these new developments while providing a detailed account of the diverse applications of COLUMBUS in recent years.
- Publication type
- Journal Article MeSH
This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.
- Publication type
- Journal Article MeSH
- Review MeSH
The fluorescent molecule diphenylhexatriene (DPH) has been often used in combination with fluorescence anisotropy measurements, yet little is known regarding the non-linear optical properties. In the current work, we focus on them and extend the application to fluorescence, while paying attention to the conformational versatility of DPH when it is embedded in different membrane phases. Extensive hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the influence of the phase- and temperature-dependent lipid environment on the probe. Already, the transition dipole moments and one-photon absorption spectra obtained in the liquid ordered mixture of sphingomyelin (SM)-cholesterol (Chol) (2:1) differ largely from the ones calculated in the liquid disordered DOPC and solid gel DPPC membranes. Throughout the work, the molecular conformation in SM:Chol is found to differ from the other environments. The two-photon absorption spectra and the ones obtained by hyper-Rayleigh scattering depend strongly on the environment. Finally, a stringent comparison of the fluorescence anisotropy decay and the fluorescence lifetime confirm the use of DPH to gain information upon the surrounding lipids and lipid phases. DPH might thus open the possibility to detect and analyze different biological environments based on its absorption and emission properties.
- Keywords
- QM/MM, absorption, conformationally versatile molecules, fluorescence anisotropy, fluorescence decay, hyper-Rayleigh scattering, photoselection, two-photon absorption,
- MeSH
- Cholesterol chemistry MeSH
- Diphenylhexatriene chemistry MeSH
- Fluorescent Dyes chemistry MeSH
- Fluorescence Polarization MeSH
- Lipid Bilayers chemistry MeSH
- Molecular Conformation MeSH
- Sphingomyelins chemistry MeSH
- Molecular Dynamics Simulation MeSH
- Transition Temperature MeSH
- Structure-Activity Relationship MeSH
- Phase Transition MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cholesterol MeSH
- Diphenylhexatriene MeSH
- Fluorescent Dyes MeSH
- Lipid Bilayers MeSH
- Sphingomyelins MeSH
The recently theoretically described nuclear spin-induced circular dichroism (NSCD) is a promising method for the optical detection of nuclear magnetization. NSCD involves both optical excitations of the molecule and hyperfine interactions and, thus, it offers a means to realize a spectroscopy with spatially localized, high-resolution information. To survey the factors relating the molecular and electronic structure to the NSCD signal, we theoretically investigate NSCD of twenty structures of the four most common nucleic acid bases (adenine, guanine, thymine, cytosine). The NSCD signal correlates with the spatial distribution of the excited states and couplings between them, reflecting changes in molecular structure and conformation. This constitutes a marked difference to the nuclear magnetic resonance (NMR) chemical shift, which only reflects the local molecular structure in the ground electronic state. The calculated NSCD spectra are rationalized by means of changes in the electronic density and by a sum-over-states approach, which allows to identify the contributions of the individual excited states. Two separate contributions to NSCD are identified and their physical origins and relative magnitudes are discussed. The results underline NSCD spectroscopy as a plausible tool with a power for the identification of not only different molecules, but their specific structures as well.
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH