Nejvíce citovaný článek - PubMed ID 25527385
Euglenoid flagellates: a multifaceted biotechnology platform
The effects of salt stress condition on the growth, morphology, photosynthetic performance, and paramylon content were examined in the mixotrophic, unicellular, flagellate Euglena gracilis. We found that salt stress negatively influenced cell growth, accompanied by a decrease in chlorophyll (Chl) content. Circular dichroism (CD) spectroscopy revealed the changes in the macro-organization of pigment-protein complexes due to salt treatment, while the small-angle neutron scattering (SANS) investigations suggested a reduction in the thylakoid stacking, an effect confirmed by the transmission electron microscopy (TEM). At the same time, the analysis of the thylakoid membrane complexes using native-polyacrylamide gel electrophoresis (PAGE) revealed no significant change in the composition of supercomplexes of the photosynthetic apparatus. Salt stress did not substantially affect the photosynthetic activity, as reflected by the fact that Chl fluorescence yield, electron transport rate (ETR), and energy transfer between the photosystems did not change considerably in the salt-grown cells. We have observed notable increases in the carotenoid-to-Chl ratio and the accumulation of paramylon in the salt-treated cells. We propose that the accumulation of storage polysaccharides and changes in the pigment composition and thylakoid membrane organization help the adaptation of E. gracilis cells to salt stress and contribute to the maintenance of cellular processes under stress conditions.
- Klíčová slova
- Euglena gracilis, microalgae, paramylon, photosynthesis, salt stress,
- Publikační typ
- časopisecké články MeSH
Euglena gracilis is a metabolically flexible, photosynthetic, and adaptable free-living protist of considerable environmental importance and biotechnological value. By label-free liquid chromatography tandem mass spectrometry, a total of 1,786 proteins were identified from the E. gracilis purified mitochondria, representing one of the largest mitochondrial proteomes so far described. Despite this apparent complexity, protein machinery responsible for the extensive RNA editing, splicing, and processing in the sister clades diplonemids and kinetoplastids is absent. This strongly suggests that the complex mechanisms of mitochondrial gene expression in diplonemids and kinetoplastids occurred late in euglenozoan evolution, arising independently. By contrast, the alternative oxidase pathway and numerous ribosomal subunits presumed to be specific for parasitic trypanosomes are present in E. gracilis. We investigated the evolution of unexplored protein families, including import complexes, cristae formation proteins, and translation termination factors, as well as canonical and unique metabolic pathways. We additionally compare this mitoproteome with the transcriptome of Eutreptiella gymnastica, illuminating conserved features of Euglenida mitochondria as well as those exclusive to E. gracilis. This is the first mitochondrial proteome of a free-living protist from the Excavata and one of few available for protists as a whole. This study alters our views of the evolution of the mitochondrion and indicates early emergence of complexity within euglenozoan mitochondria, independent of parasitism.
- Klíčová slova
- Euglena gracilis, Euglenozoa, mitochondria, proteome, protist,
- MeSH
- Euglena gracilis metabolismus MeSH
- mitochondriální proteiny metabolismus MeSH
- proteom * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální proteiny MeSH
- proteom * MeSH
Chloroplasts are generally known as eukaryotic organelles whose main function is photosynthesis. They perform other functions, however, such as synthesizing isoprenoids, fatty acids, heme, iron sulphur clusters and other essential compounds. In non-photosynthetic lineages that possess plastids, the chloroplast genomes have been reduced and most (or all) photosynthetic genes have been lost. Consequently, non-photosynthetic plastids have also been reduced structurally. Some of these non-photosynthetic or "cryptic" plastids were overlooked or unrecognized for decades. The number of complete plastid genome sequences and/or transcriptomes from non-photosynthetic taxa possessing plastids is rapidly increasing, thus allowing prediction of the functions of non-photosynthetic plastids in various eukaryotic lineages. In some non-photosynthetic eukaryotes with photosynthetic ancestors, no traces of plastid genomes or of plastids have been found, suggesting that they have lost the genomes or plastids completely. This review summarizes current knowledge of non-photosynthetic plastids, their genomes, structures and potential functions in free-living and parasitic plants, algae and protists. We introduce a model for the order of plastid gene losses which combines models proposed earlier for land plants with the patterns of gene retention and loss observed in protists. The rare cases of plastid genome loss and complete plastid loss are also discussed.
- Klíčová slova
- Essential metabolic pathways, Non-photosynthetic plastids, Parasitism, Plastid genome, Plastid loss,
- MeSH
- biologická evoluce MeSH
- chloroplasty genetika MeSH
- fotosyntéza genetika MeSH
- fylogeneze MeSH
- genom genetika MeSH
- plastidy genetika MeSH
- rostliny genetika MeSH
- sinice genetika růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In this study, we describe the mitochondrial genome of the excavate flagellate Euglena gracilis. Its gene complement is reduced as compared with the well-studied sister groups Diplonemea and Kinetoplastea. We have identified seven protein-coding genes: Three subunits of respiratory complex I (nad1, nad4, and nad5), one subunit of complex III (cob), and three subunits of complex IV (cox1, cox2, and a highly divergent cox3). Moreover, fragments of ribosomal RNA genes have also been identified. Genes encoding subunits of complex V, ribosomal proteins and tRNAs were missing, and are likely located in the nuclear genome. Although mitochondrial genomes of diplonemids and kinetoplastids possess the most complex RNA processing machineries known, including trans-splicing and editing of the uridine insertion/deletion type, respectively, our transcriptomic data suggest their total absence in E. gracilis. This finding supports a scenario in which the complex mitochondrial processing machineries of both sister groups evolved relatively late in evolution from a streamlined genome and transcriptome of their common predecessor.
- Klíčová slova
- Euglena gracilis, RNA editing, mitochondrial genome, transcription,
- MeSH
- editace RNA MeSH
- elektronový transportní řetězec genetika MeSH
- Euglena gracilis genetika MeSH
- genom mitochondriální * MeSH
- molekulární evoluce * MeSH
- RNA ribozomální genetika MeSH
- sestřih RNA MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- elektronový transportní řetězec MeSH
- RNA ribozomální MeSH