Nejvíce citovaný článek - PubMed ID 22688819
The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix. The latter two taxa harbour conspicuous mitochondrion-related organelles (MROs). Here we report high-quality genome and transcriptome assemblies of two Preaxostyla representatives, the free-living Paratrimastix pyriformis and the oxymonad Blattamonas nauphoetae. We performed thorough comparisons among all available genomic and transcriptomic data of Preaxostyla to further decipher the evolutionary changes towards amitochondriality, endobiosis, and unstacked Golgi. Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated (M. exilis, B. nauphoetae, and Streblomastix strix), suggesting the amitochondriate status is common to a large part if not the whole group of Oxymonadida. This observation moves this unique loss to 100 MYA when oxymonad lineage diversified.
- MeSH
- Eukaryota * genetika MeSH
- fylogeneze MeSH
- genomika MeSH
- mitochondrie genetika MeSH
- Oxymonadida * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Archamoebae comprises free-living or endobiotic amoebiform protists that inhabit anaerobic or microaerophilic environments and possess mitochondrion-related organelles (MROs) adapted to function anaerobically. We compared in silico reconstructed MRO proteomes of eight species (six genera) and found that the common ancestor of Archamoebae possessed very few typical components of the protein translocation machinery, electron transport chain and tricarboxylic acid cycle. On the other hand, it contained a sulphate activation pathway and bacterial iron-sulphur (Fe-S) assembly system of MIS-type. The metabolic capacity of the MROs, however, varies markedly within this clade. The glycine cleavage system is widely conserved among Archamoebae, except in Entamoeba, probably owing to its role in catabolic function or one-carbon metabolism. MRO-based pyruvate metabolism was dispensed within subgroups Entamoebidae and Rhizomastixidae, whereas sulphate activation could have been lost in isolated cases of Rhizomastix libera, Mastigamoeba abducta and Endolimax sp. The MIS (Fe-S) assembly system was duplicated in the common ancestor of Mastigamoebidae and Pelomyxidae, and one of the copies took over Fe-S assembly in their MRO. In Entamoebidae and Rhizomastixidae, we hypothesize that Fe-S cluster assembly in both compartments may be facilitated by dual localization of the single system. We could not find evidence for changes in metabolic functions of the MRO in response to changes in habitat; it appears that such environmental drivers do not strongly affect MRO reduction in this group of eukaryotes.
- Klíčová slova
- anaerobiosis, comparative genomics, mitochondrion-related organelles, reductive evolution,
- MeSH
- anaerobióza MeSH
- Eukaryota * MeSH
- mitochondrie * genetika MeSH
- sírany MeSH
- železo MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- sírany MeSH
- železo MeSH
The endobiotic flagellate Monocercomonoides exilis is the only known eukaryote to have lost mitochondria and all its associated proteins in its evolutionary past. This final stage of the mitochondrial evolutionary pathway may serve as a model to explain events at their very beginning such as the initiation of protein import. We have assessed the capability of proteins from this eukaryote to enter emerging mitochondria using a specifically designed in vitro assay. Hydrogenosomes (reduced mitochondria) of Trichomonas vaginalis were incubated with a soluble protein pool derived from a cytosolic fraction of M. exilis, and proteins entering hydrogenosomes were subsequently detected by mass spectrometry. The assay detected 19 specifically and reproducibly imported proteins, and in 14 cases the import was confirmed by the overexpression of their tagged version in T. vaginalis. In most cases, only a small portion of the signal reached the hydrogenosomes, suggesting specific but inefficient transport. Most of these proteins represent enzymes of carbon metabolism, and none exhibited clear signatures of proteins targeted to hydrogenosomes or mitochondria, which is consistent with their inefficient import. The observed phenomenon may resemble a primaeval type of protein import which might play a role in the establishment of the organelle and shaping of its proteome in the initial stages of endosymbiosis.
- Klíčová slova
- evolution of protein targeting, hydrogenosome, mitochondrion-free eukaryote, protein import,
- MeSH
- Eukaryota * metabolismus MeSH
- mitochondrie metabolismus MeSH
- organely chemie metabolismus MeSH
- protozoální proteiny * metabolismus MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální proteiny * MeSH
BACKGROUND: Mitochondria and peroxisomes are the two organelles that are most affected during adaptation to microoxic or anoxic environments. Mitochondria are known to transform into anaerobic mitochondria, hydrogenosomes, mitosomes, and various transition stages in between, collectively called mitochondrion-related organelles (MROs), which vary in enzymatic capacity. Anaerobic peroxisomes were identified only recently, and their putatively most conserved function seems to be the metabolism of inositol. The group Archamoebae includes anaerobes bearing both anaerobic peroxisomes and MROs, specifically hydrogenosomes in free-living Mastigamoeba balamuthi and mitosomes in the human pathogen Entamoeba histolytica, while the organelles within the third lineage represented by Pelomyxa remain uncharacterized. RESULTS: We generated high-quality genome and transcriptome drafts from Pelomyxa schiedti using single-cell omics. These data provided clear evidence for anaerobic derivates of mitochondria and peroxisomes in this species, and corresponding vesicles were tentatively identified in electron micrographs. In silico reconstructed MRO metabolism harbors respiratory complex II, electron-transferring flavoprotein, a partial TCA cycle running presumably in the reductive direction, pyruvate:ferredoxin oxidoreductase, [FeFe]-hydrogenases, a glycine cleavage system, a sulfate activation pathway, and an expanded set of NIF enzymes for iron-sulfur cluster assembly. When expressed in the heterologous system of yeast, some of these candidates localized into mitochondria, supporting their involvement in the MRO metabolism. The putative functions of P. schiedti peroxisomes could be pyridoxal 5'-phosphate biosynthesis, amino acid and carbohydrate metabolism, and hydrolase activities. Unexpectedly, out of 67 predicted peroxisomal enzymes, only four were also reported in M. balamuthi, namely peroxisomal processing peptidase, nudix hydrolase, inositol 2-dehydrogenase, and D-lactate dehydrogenase. Localizations in yeast corroborated peroxisomal functions of the latter two. CONCLUSIONS: This study revealed the presence and partially annotated the function of anaerobic derivates of mitochondria and peroxisomes in P. schiedti using single-cell genomics, localizations in yeast heterologous systems, and transmission electron microscopy. The MRO metabolism resembles that of M. balamuthi and most likely reflects the state in the common ancestor of Archamoebae. The peroxisomal metabolism is strikingly richer in P. schiedti. The presence of myo-inositol 2-dehydrogenase in the predicted peroxisomal proteome corroborates the situation in other Archamoebae, but future experimental evidence is needed to verify additional functions of this organelle.
- Klíčová slova
- Anaerobic peroxisome, Anaerobiosis, FeS cluster assembly, Hydrogenosome, Mitochondrion-related organelle, Pelomyxa, Single-cell genomics,
- MeSH
- Amoeba * genetika metabolismus MeSH
- anaerobióza MeSH
- Archamoebae * genetika metabolismus MeSH
- genomika MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- peroxizomy metabolismus MeSH
- Saccharomyces cerevisiae MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Eukaryotic organelles supposedly evolved from their bacterial ancestors because of their benefits to host cells. However, organelles are quite often retained, even when the beneficial metabolic pathway is lost, due to something other than the original beneficial function. The organellar function essential for cell survival is, in the end, the result of organellar evolution, particularly losses of redundant metabolic pathways present in both the host and endosymbiont, followed by a gradual distribution of metabolic functions between the organelle and host. Such biological division of metabolic labor leads to mutual dependence of the endosymbiont and host. Changing environmental conditions, such as the gradual shift of an organism from aerobic to anaerobic conditions or light to dark, can make the original benefit useless. Therefore, it can be challenging to deduce the original beneficial function, if there is any, underlying organellar acquisition. However, it is also possible that the organelle is retained because it simply resists being eliminated or digested untill it becomes indispensable.
- Klíčová slova
- benefit, endosymbiosis, essential function, mitochondrion, organelle, plastid,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: The phylum Euglenozoa is a group of flagellated protists comprising the diplonemids, euglenids, symbiontids, and kinetoplastids. The diplonemids are highly abundant and speciose, and recent tools have rendered the best studied representative, Diplonema papillatum, genetically tractable. However, despite the high diversity of diplonemids, their lifestyles, ecological functions, and even primary energy source are mostly unknown. RESULTS: We designed a metabolic map of D. papillatum cellular bioenergetic pathways based on the alterations of transcriptomic, proteomic, and metabolomic profiles obtained from cells grown under different conditions. Comparative analysis in the nutrient-rich and nutrient-poor media, as well as the absence and presence of oxygen, revealed its capacity for extensive metabolic reprogramming that occurs predominantly on the proteomic rather than the transcriptomic level. D. papillatum is equipped with fundamental metabolic routes such as glycolysis, gluconeogenesis, TCA cycle, pentose phosphate pathway, respiratory complexes, β-oxidation, and synthesis of fatty acids. Gluconeogenesis is uniquely dominant over glycolysis under all surveyed conditions, while the TCA cycle represents an eclectic combination of standard and unusual enzymes. CONCLUSIONS: The identification of conventional anaerobic enzymes reflects the ability of this protist to survive in low-oxygen environments. Furthermore, its metabolism quickly reacts to restricted carbon availability, suggesting a high metabolic flexibility of diplonemids, which is further reflected in cell morphology and motility, correlating well with their extreme ecological valence.
- Klíčová slova
- Adaptation, Diplonema, Euglenozoa, Hypoxia, Metabolism, Mitochondrion, Multiomics,
- MeSH
- Euglenozoa genetika MeSH
- Eukaryota MeSH
- fylogeneze MeSH
- kyslík MeSH
- profáze meiózy I * MeSH
- proteomika * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyslík MeSH
Methanogens represent the final decomposition step in anaerobic degradation of organic matter, occurring in the digestive tracts of various invertebrates. However, factors determining their community structure and activity in distinct gut sections are still debated. In this study, we focused on the tropical millipede species Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae), which release considerable amounts of methane. We aimed to characterize relationships between physicochemical parameters, methane production rates, and methanogen community structure in the two major gut sections, midgut and hindgut. Microsensor measurements revealed that both sections were strictly anoxic, with reducing conditions prevailing in both millipedes. Hydrogen concentration peaked in the anterior hindgut of E. pulchripes. In both species, the intestinal pH was significantly higher in the hindgut than in the midgut. An accumulation of acetate and formate in the gut indicated bacterial fermentation activities in the digestive tracts of both species. Phylogenetic analysis of 16S rRNA genes showed a prevalence of Methanobrevibacter spp. (Methanobacteriales), accompanied by a small fraction of so-far-unclassified "Methanomethylophilaceae" (Methanomassiliicoccales), in both species, which suggests that methanogenesis is mostly hydrogenotrophic. We conclude that anoxic conditions, negative redox potential, and bacterial production of hydrogen and formate promote gut colonization by methanogens. The higher activities of methanogens in the hindgut are explained by the higher pH of this compartment and their association with ciliates, which are restricted to this compartment and present an additional source of methanogenic substrates. IMPORTANCE Methane (CH4) is the second most important atmospheric greenhouse gas after CO2 and is believed to account for 17% of global warming. Methanogens are a diverse group of archaea and can be found in various anoxic habitats, including digestive tracts of plant-feeding animals. Termites, cockroaches, the larvae of scarab beetles, and millipedes are the only arthropods known to host methanogens and emit large amounts of methane. Millipedes are ranked as the third most important detritivores after termites and earthworms, and they are considered keystone species in many terrestrial ecosystems. Both methane-producing and non-methane-emitting species of millipedes have been observed, but what limits their methanogenic potential is not known. In the present study, we show that physicochemical gut conditions and the distribution of symbiotic ciliates are important factors determining CH4 emission in millipedes. We also found close similarities to other methane-emitting arthropods, which might be associated with their similar plant-feeding habits.
- Klíčová slova
- Methanobrevibacter, Methanomassiliicoccales, digestive tract, methane, methanogenesis, methanogenic community, physicochemical parameters, tropical millipedes,
- MeSH
- Bacteria genetika metabolismus MeSH
- členovci mikrobiologie MeSH
- formiáty metabolismus MeSH
- fylogeneze MeSH
- gastrointestinální trakt metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- kyslík analýza MeSH
- methan metabolismus MeSH
- oxidace-redukce MeSH
- RNA ribozomální 16S genetika MeSH
- střevní mikroflóra * genetika MeSH
- vodík metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- formiáty MeSH
- formic acid MeSH Prohlížeč
- kyslík MeSH
- methan MeSH
- RNA ribozomální 16S MeSH
- vodík MeSH
Euglenids represent a group of protists with diverse modes of feeding. To date, only a partial genomic sequence of Euglena gracilis and transcriptomes of several phototrophic and secondarily osmotrophic species are available, while primarily heterotrophic euglenids are seriously undersampled. In this work, we begin to fill this gap by presenting genomic and transcriptomic drafts of a primary osmotroph, Rhabdomonas costata. The current genomic assembly length of 100 Mbp is 14× smaller than that of E. gracilis. Despite being too fragmented for comprehensive gene prediction it provided fragments of the mitochondrial genome and comparison of the transcriptomic and genomic data revealed features of its introns, including several candidates for nonconventional types. A set of 39,456 putative R. costata proteins was predicted from the transcriptome. Annotation of the mitochondrial core metabolism provides the first data on the facultatively anaerobic mitochondrion of R. costata, which in most respects resembles the mitochondrion of E. gracilis with a certain level of streamlining. R. costata can synthetise thiamine by enzymes of heterogenous provenances and haem by a mitochondrial-cytoplasmic C4 pathway with enzymes orthologous to those found in E. gracilis. The low percentage of green algae-affiliated genes supports the ancestrally osmotrophic status of this species.
- MeSH
- biologická evoluce MeSH
- Chromatium genetika metabolismus MeSH
- Euglenida genetika metabolismus MeSH
- exony genetika MeSH
- fylogeneze MeSH
- genom MeSH
- heterotrofní procesy MeSH
- introny genetika MeSH
- mitochondrie genetika MeSH
- sekvenční analýza DNA metody MeSH
- transkriptom genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Although the mitochondria of extant eukaryotes share a single origin, functionally these organelles diversified to a great extent, reflecting lifestyles of the organisms that host them. In anaerobic protists of the group Metamonada, mitochondria are present in reduced forms (also termed hydrogenosomes or mitosomes) and a complete loss of mitochondrion in Monocercomonoides exilis (Metamonada:Preaxostyla) has also been reported. Within metamonads, retortamonads from the gastrointestinal tract of vertebrates form a sister group to parasitic diplomonads (e.g. Giardia and Spironucleus) and have also been hypothesized to completely lack mitochondria. We obtained transcriptomic data from Retortamonas dobelli and R. caviae and searched for enzymes of the core metabolism as well as mitochondrion- and parasitism-related proteins. Our results indicate that retortamonads have a streamlined metabolism lacking pathways for metabolites they are probably capable of obtaining from prey bacteria or their environment, reminiscent of the biochemical arrangement in other metamonads. Retortamonads were surprisingly found do encode homologs of components of Giardia's remarkable ventral disk, as well as homologs of regulatory NEK kinases and secreted lytic enzymes known for involvement in host colonization by Giardia. These can be considered pre-adaptations of these intestinal microorganisms to parasitism. Furthermore, we found traces of the mitochondrial metabolism represented by iron‑sulfur cluster assembly subunits, subunits of mitochondrial translocation and chaperone machinery and, importantly, [FeFe]‑hydrogenases and hydrogenase maturases (HydE, HydF and HydG). Altogether, our results strongly suggest that a remnant mitochondrion is still present.
- Klíčová slova
- Anaerobic metabolism, Diplomonads, Hydrogenosome, Mitochondrion-related organelles,
- MeSH
- anaerobióza MeSH
- biologická adaptace * MeSH
- Diplomonadida cytologie fyziologie MeSH
- mitochondrie fyziologie MeSH
- morčata MeSH
- nemoci hlodavců MeSH
- protozoální infekce zvířat metabolismus parazitologie MeSH
- Retortamonadidae cytologie fyziologie MeSH
- žáby MeSH
- zvířata MeSH
- Check Tag
- morčata MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Apicomplexa is a diverse phylum comprising unicellular endobiotic animal parasites and contains some of the most well-studied microbial eukaryotes including the devastating human pathogens Plasmodium falciparum and Cryptosporidium hominis. In contrast, data on the invertebrate-infecting gregarines remains sparse and their evolutionary relationship to other apicomplexans remains obscure. Most apicomplexans retain a highly modified plastid, while their mitochondria remain metabolically conserved. Cryptosporidium spp. inhabit an anaerobic host-gut environment and represent the known exception, having completely lost their plastid while retaining an extremely reduced mitochondrion that has lost its genome. Recent advances in single-cell sequencing have enabled the first broad genome-scale explorations of gregarines, providing evidence of differential plastid retention throughout the group. However, little is known about the retention and metabolic capacity of gregarine mitochondria. RESULTS: Here, we sequenced transcriptomes from five species of gregarines isolated from cockroaches. We combined these data with those from other apicomplexans, performed detailed phylogenomic analyses, and characterized their mitochondrial metabolism. Our results support the placement of Cryptosporidium as the earliest diverging lineage of apicomplexans, which impacts our interpretation of evolutionary events within the phylum. By mapping in silico predictions of core mitochondrial pathways onto our phylogeny, we identified convergently reduced mitochondria. These data show that the electron transport chain has been independently lost three times across the phylum, twice within gregarines. CONCLUSIONS: Apicomplexan lineages show variable functional restructuring of mitochondrial metabolism that appears to have been driven by adaptations to parasitism and anaerobiosis. Our findings indicate that apicomplexans are rife with convergent adaptations, with shared features including morphology, energy metabolism, and intracellularity.
- Klíčová slova
- Anaerobic metabolism, Apicomplexa, Eugregarines, Evolution, Mitochondria, Mitosome, Parasitism, Phylogenomics,
- MeSH
- analýza jednotlivých buněk MeSH
- Apicomplexa * genetika MeSH
- fylogeneze MeSH
- lidé MeSH
- mitochondrie * genetika MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH