Nejvíce citovaný článek - PubMed ID 25546384
Formins: linking cytoskeleton and endomembranes in plant cells
Formins are a large, evolutionarily old family of cytoskeletal regulators whose roles include actin capping and nucleation, as well as modulation of microtubule dynamics. The plant class I formin clade is characterized by a unique domain organization, as most of its members are transmembrane proteins with possible cell wall-binding motifs exposed to the extracytoplasmic space-a structure that appears to be a synapomorphy of the plant kingdom. While such transmembrane formins are traditionally considered mainly as plasmalemma-localized proteins contributing to the organization of the cell cortex, we review, from a cell biology perspective, the growing evidence that they can also, at least temporarily, reside (and in some cases also function) in endomembranes including secretory and endocytotic pathway compartments, the endoplasmic reticulum, the nuclear envelope, and the tonoplast. Based on this evidence, we propose that class I formins may thus serve as 'active cargoes' of membrane trafficking-membrane-embedded proteins that modulate the fate of endo- or exocytotic compartments while being transported by them.
- Klíčová slova
- Actin, biotic interactions, cell growth, cytokinesis, endocytosis, exocytosis, formin, microtubules, plasmalemma, tonoplast,
- MeSH
- buněčná membrána * metabolismus MeSH
- forminy * metabolismus MeSH
- membránové proteiny metabolismus genetika MeSH
- rostlinné proteiny metabolismus genetika MeSH
- transport proteinů * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- forminy * MeSH
- membránové proteiny MeSH
- rostlinné proteiny MeSH
The ARP2/3 complex and formins are the only known plant actin nucleators. Besides their actin-related functions, both systems also modulate microtubule organization and dynamics. Loss of the main housekeeping Arabidopsis thaliana Class I membrane-targeted formin FH1 (At3g25500) is known to increase cotyledon pavement cell lobing, while mutations affecting ARP2/3 subunits exhibit an opposite effect. Here we examine the role of FH1 and the ARP2/3 complex subunit ARPC5 (At4g01710) in epidermal cell morphogenesis with focus on pavement cells and trichomes using a model system of single fh1 and arpc5, as well as double fh1 arpc5 mutants. While cotyledon pavement cell shape in double mutants mostly resembled single arpc5 mutants, analysis of true leaf epidermal morphology, as well as actin and microtubule organization and dynamics, revealed a more complex relationship between the two systems and similar, rather than antagonistic, effects on some parameters. Both fh1 and arpc5 mutations increased actin network density and increased cell shape complexity in pavement cells and trichomes of first true leaves, in contrast to cotyledons. Thus, while the two actin nucleation systems have complementary roles in some aspects of cell morphogenesis in cotyledon pavement cells, they may act in parallel in other cell types and developmental stages.
- Klíčová slova
- ARP2/3, At3g25500, At4g01710, actin nucleation, cytoskeleton, formin, pavement cell, trichome,
- Publikační typ
- časopisecké články MeSH
Formins are evolutionarily conserved multi-domain proteins participating in the control of both actin and microtubule dynamics. Angiosperm formins form two evolutionarily distinct families, Class I and Class II, with class-specific domain layouts. The model plant Arabidopsis thaliana has 21 formin-encoding loci, including 10 Class II members. In this study, we analyze the subcellular localization of two A. thaliana Class II formins exhibiting typical domain organization, the so far uncharacterized formin AtFH13 (At5g58160) and its distant homolog AtFH14 (At1g31810), previously reported to bind microtubules. Fluorescent protein-tagged full length formins and their individual domains were transiently expressed in Nicotiana benthamiana leaves under the control of a constitutive promoter and their subcellular localization (including co-localization with cytoskeletal structures and the endoplasmic reticulum) was examined using confocal microscopy. While the two formins exhibit distinct and only partially overlapping localization patterns, they both associate with microtubules via the conserved formin homology 2 (FH2) domain and with the periphery of the endoplasmic reticulum, at least in part via the N-terminal PTEN (Phosphatase and Tensin)-like domain. Surprisingly, FH2 domains of AtFH13 and AtFH14 can form heterodimers in the yeast two-hybrid assay-a first case of potentially biologically relevant formin heterodimerization mediated solely by the FH2 domain.
- Klíčová slova
- At1g31810, At5g58160, AtFH13, AtFH14, FH2 domain, PTEN-like domain, class II formin, confocal laser scanning microscopy,
- MeSH
- Arabidopsis genetika metabolismus MeSH
- dimerizace MeSH
- endoplazmatické retikulum metabolismus MeSH
- exprese genu MeSH
- forminy genetika metabolismus MeSH
- mikrotubuly metabolismus MeSH
- proteinové domény MeSH
- proteiny huseníčku genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- tabák metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- forminy MeSH
- proteiny huseníčku MeSH
- rekombinantní proteiny MeSH
SH3P2 (At4g34660), an Arabidopsis thaliana SH3 and Bin/amphiphysin/Rvs (BAR) domain-containing protein, was reported to have a specific role in cell plate assembly, unlike its paralogs SH3P1 (At1g31440) and SH3P3 (At4g18060). SH3P family members were also predicted to interact with formins-evolutionarily conserved actin nucleators that participate in microtubule organization and in membrane-cytoskeleton interactions. To trace the origin of functional specialization of plant SH3Ps, we performed phylogenetic analysis of SH3P sequences from selected plant lineages. SH3Ps are present in charophytes, liverworts, mosses, lycophytes, gymnosperms, and angiosperms, but not in volvocal algae, suggesting association of these proteins with phragmoplast-, but not phycoplast-based cell division. Separation of three SH3P clades, represented by SH3P1, SH3P2, and SH3P3 of A. thaliana, appears to be a seed plant synapomorphy. In the yeast two hybrid system, Arabidopsis SH3P3, but not SH3P2, binds the FH1 and FH2 domains of the formin FH5 (At5g54650), known to participate in cytokinesis, while an opposite binding specificity was found for the dynamin homolog DRP1A (At5g42080), confirming earlier findings. This suggests that the cytokinetic role of SH3P2 is not due to its interaction with FH5. Possible determinants of interaction specificity of SH3P2 and SH3P3 were identified bioinformatically.
- Klíčová slova
- cell plate, cytokinesis, evolution, formin, interaction specificity, phylogeny,
- MeSH
- Arabidopsis MeSH
- cytokineze * MeSH
- dynaminy metabolismus MeSH
- fylogeneze MeSH
- molekulární evoluce * MeSH
- proteiny huseníčku klasifikace genetika metabolismus MeSH
- transportní proteiny klasifikace genetika metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dynaminy MeSH
- proteiny huseníčku MeSH
- SH3P2 protein, Arabidopsis MeSH Prohlížeč
- transportní proteiny MeSH
Development of the plant aerial organs epidermis involves a complex interplay of cytoskeletal rearrangements, membrane trafficking-dependent cell surface expansion, and intra- and intercellular signaling, resulting in a pattern of perfectly interlocking pavement cells. While recent detailed in vivo observations convincingly identify microtubules rather than actin as key players at the early stages of development of pavement cell lobes in Arabidopsis, mutations affecting the actin-nucleating ARP2/3 complex are long known to reduce pavement cell lobing, suggesting a central role for actin. We have now shown that functional impairment of the Arabidopsis formin FH1 enhances both microtubule dynamics and pavement cell lobing. While formins are best known for their ability to nucleate actin, many members of this old gene family now emerge as direct or indirect regulators of the microtubule cytoskeleton, and our findings suggest that they might co-ordinate action of the two cytoskeletal systems during pavement cell morphogenesis.
- Klíčová slova
- Actin, FH2 proteins, cell growth, epidermal pavement cells, formins, microtubules,
- MeSH
- Arabidopsis růst a vývoj metabolismus ultrastruktura MeSH
- biologické modely MeSH
- cytoskelet metabolismus fyziologie ultrastruktura MeSH
- forminy MeSH
- membránové proteiny genetika metabolismus fyziologie MeSH
- mikrotubuly metabolismus fyziologie ultrastruktura MeSH
- multigenová rodina MeSH
- proteiny huseníčku genetika metabolismus fyziologie MeSH
- rostlinné buňky metabolismus ultrastruktura MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AFH1 protein, Arabidopsis MeSH Prohlížeč
- forminy MeSH
- membránové proteiny MeSH
- proteiny huseníčku MeSH
Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes.
- Klíčová slova
- MAP, microtubules, multifunctional MAP, plants, tubulin,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH