Most cited article - PubMed ID 25548168
The global distribution of diet breadth in insect herbivores
The transition zone between the Nearctic and Neotropical biogeographic regions is one of the most species-rich areas of North America, known as the Mexican Transition Zone. We sampled mobile insects along a 2000 m elevational gradient for 13 months using flight interception traps (Malaise) to evaluate their diversity, community structure and environmental factors linked to their distribution. We identified 3091 Molecular Operational Taxonomical Units (560 ± 199 SD per trap), out of which 513 were identified to genus and 197 to species. Our results show high turnover at both species and genus levels across the elevational gradient. Elevational diversity patterns varied across taxa: Coleoptera and Lepidoptera showed their highest diversity at mid-elevations, while Diptera and Hymenoptera had increased diversity with elevation. Temperature and vegetation composition best explained the spatial fluctuations of insect diversity. Our work represents the most comprehensive survey of insect communities in the region to date. By combining a long-term survey with high-throughput metabarcoding, this study provides an overview of regional diversity and establishes a foundation for detailed follow-up studies.
- MeSH
- Biodiversity * MeSH
- Insecta * genetics classification MeSH
- Altitude * MeSH
- DNA Barcoding, Taxonomic * methods MeSH
- Tropical Climate MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Mexico MeSH
Temperate plants show a rapid seasonal turnover in various leaf traits and defenses. Such trends in plant defenses can potentially drive seasonal shifts in the specialization of insect herbivores. We quantified how non-volatile leaf metabolites, inducible volatile organic compounds (VOCs), C:N ratio and leaf toughness changed between the early, middle, and late seasons in five Salicaceae species and one Salix hybrid. We also explored seasonal trends in overall trait variation among the studied plants. We tested whether seasonal changes in dietary specialization of leaf-chewing larvae and adult beetles related to changes in the studied host-plant traits. Trait turnover occurred mainly through changes in VOCs and seasonal increase in traits that directly lower herbivore feeding efficiency. The overall variation in leaf traits was highest in the early season, with seasonal intraspecific variation being 33% smaller than the variation among species sampled at one time point. Although less frequently than we expected, the two groups of insect herbivores showed seasonal changes in specialization. The significant trends in herbivore specialization included peaks in the middle season for larval specialization based on VOCs and host phylogenetic relatedness and for adult beetle specialization based on C:N ratio plus leaf toughness. The detected species-specific trends in host-plant traits, their intraspecific variability, and differential trends among insect herbivores highlight the importance of considering seasonal variation when predicting trends in plant-herbivore interactions.
- Keywords
- Chemical defenses, Leaf toughness, Salicinoids, Tannins, Volatile organic compounds,
- MeSH
- Coleoptera physiology MeSH
- Herbivory * MeSH
- Larva physiology MeSH
- Plant Leaves * MeSH
- Seasons MeSH
- Salicaceae * MeSH
- Volatile Organic Compounds MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Volatile Organic Compounds MeSH
Our understanding of herbivorous insect's host selection is often based on observed associations with host plants, which can be biased by relative plant abundance, leading to inaccurate assumptions of preference. These biases may be particularly pronounced for insects associated with bryophytes, where dominance patterns are less evident. Estimating selection tendencies is also challenging for rare species with unique ecologies. Boreus hyemalis, a winter-active insect, associates with a range of bryophyte species, yet its specificity in moss-host selection remains unclear. This study investigates whether B. hyemalis shows non-random distribution among bryophyte species in natural habitats and laboratory settings. Field surveys revealed associations with 21 moss species, with significant selection tendencies toward Dicranella heteromalla and Hypnum cupressiforme, with moss species richness being a key factor for boreid inhabitance. Laboratory tests assessed selection among 14 moss species, including H. cupressiforme morphotypes, under controlled conditions. Results indicated Polytrichum formosum was the most frequently selected in the lab. Despite some discrepancies between field and lab findings, B. hyemalis shows specific selection tendencies for particular moss species. These results provide new insights into the ecological interactions between bryophytes and this winter-active insect, emphasizing the importance of moss structure and species richness in shaping B. hyemalis distribution.
- Keywords
- boreidae, bryophagy, bryophytes, insect–plant interactions, non-random distribution,
- Publication type
- Journal Article MeSH
Insect herbivory plays a crucial role in shaping plant communities in many terrestrial ecosystems. However, in African savannas, insect herbivory has been relatively understudied compared to large mammalian herbivory. In this study, we examined the impact of insect herbivory, focusing on leaf chewers and miners, in a South African savanna-forest mosaic (including patches of forest, thicket and savanna) in Hluhluwe iMfolozi Park, South Africa. Our investigation spanned gradients of rainfall, fire frequency and mammal density. We surveyed a total of 864 woody plants from 48 plant species in 38 plots. Insects consumed 6% of leaf biomass, which is comparable to their impact in temperate broadleaf forests, but the extent of herbivory damage varied between vegetation types. Overall, leaf loss was 70% higher in forests and savanna than that in thicket. Plants in the forests experienced greater damage from chewing insects, whereas miners caused relatively more damage in savannas. Rates of insect herbivory also varied among plant species, declining with carbon and dry matter content but increasing with specific leaf area. Although no significant trade-off was detected between insect and mammal herbivory, plant species with limited physical defences against mammals tended to experience high levels of insect herbivory. Our findings highlight the intricate dynamics of insect herbivory in different vegetation types and suggest that insect leaf herbivory, alongside mammalian herbivory, could play a significant role in influencing plant community composition and overall savanna ecosystem functioning.
- Keywords
- South Africa, arthropod herbivory damage, insect herbivory, insect–plant interactions, leaf chewers, leaf miners, savanna‐forest mosaic, ungulates,
- Publication type
- Journal Article MeSH
Invasions by nonnative insect species can massively disrupt ecological processes, often leading to serious economic impacts. Previous work has identified propagule pressure as important driver of the trend of increasing numbers of insect invasions worldwide. In the present article, we propose an alternative hypothesis-that insect invasions are being driven by the proliferation of nonnative plants, which create niches for insect specialists and facilitate their establishment outside their native ranges where their hosts are planted or are invasive. We synthesize mechanisms by which plant invasions facilitate insect invasions, macroecological patterns supporting the tight link between plant and insect invasions, and case studies of plant invasions having facilitated subsequent insect establishment. This body of evidence indicates that plant invasions are a major driver of insect invasions. Consequently, the benefits of limiting the spread of nonnative plants include averting the proliferation of nonnative insects and their spillover onto native plant species.
- Keywords
- empty niche, enemy release, facilitation, human-mediated dispersal, introduction pathways,
- Publication type
- Journal Article MeSH
- Review MeSH
Trees growing outside their native geographic ranges often exhibit exceptional growth and survival due in part to the lack of co-evolved natural enemies that may limit their spread and suppress population growth. While most non-native trees tend to accumulate natural enemies over time, it remains uncertain which host and insect characteristics affect these novel associations and whether novel associations follow patterns of assembly similar to those of native hosts. Here, we used a dataset of insect-host tree associations in Europe to model which native insect species are paired with which native tree species, and then tested the model on its ability to predict which native insects are paired with which non-native trees. We show that native and non-native tree species closely related to known hosts are more likely to be hosts themselves, but that native host geographic range size, insect feeding guild, and sampling effort similarly affect insect associations. Our model had a strong ability to predict which insect species utilize non-native trees as hosts, but evolutionarily isolated tree species posed the greatest challenge to the model. These results demonstrate that insect-host associations can be reliably predicted, regardless of whether insect and host trees have co-evolved, and provide a framework for predicting future pest threats using a select number of easily attainable tree and insect characteristics.
- Keywords
- evolutionary isolation, geographic ranges, insect–tree associations, invasive species, native trees, novel interactions, phylogeny,
- Publication type
- Journal Article MeSH
Polyphagous insect herbivores feed on multiple host-plant species and face a highly variable chemical landscape. Comparative studies of polyphagous herbivore metabolism across a range of plants is an ideal approach for exploring how intra- and interspecific chemical variation shapes species interactions. We used polyphagous caterpillars of Lymantria mathura (Erebidae, Lepidoptera) to explore mechanisms that may contribute to its ability to feed on various hosts. We focused on intraspecific variation in polyphenol metabolism, the fates of individual polyphenols, and the role of previous feeding experience on polyphenol metabolism and leaf consumption. We collected the caterpillars from Acer amoenum (Sapindaceae), Carpinus cordata (Betulaceae), and Quercus crispula (Fagaceae). We first fed the larvae with the leaves of their original host and characterized the polyphenol profiles in leaves and frass. We then transferred a subset of larvae to a different host species and quantified how host shifting affected their leaf consumption and polyphenol metabolism. There was high intraspecific variation in frass composition, even among caterpillars fed with one host. While polyphenols had various fates when ingested by the caterpillars, most of them were passively excreted. When we transferred the caterpillars to a new host, their previous experience influenced how they metabolized polyphenols. The one-host larvae metabolized a larger quantity of ingested polyphenols than two-host caterpillars. Some of these metabolites could have been sequestered, others were probably activated in the gut. One-host caterpillars retained more of the ingested leaf biomass than transferred caterpillars. The pronounced intraspecific variation in polyphenol metabolism, an ability to excrete ingested metabolites and potential dietary habituation are factors that may contribute to the ability of L. mathura to feed across multiple hosts. Further comparative studies can help identify if these mechanisms are related to differential host-choice and response to host-plant traits in specialist and generalist insect herbivores.
- Keywords
- chemical defenses, detoxification, flavonoids, frass, habituation, tannins,
- Publication type
- Journal Article MeSH
Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.
- MeSH
- Biological Evolution MeSH
- Phylogeny * MeSH
- Butterflies * genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Specialised natural enemies can locally suppress seeds and seedlings near conspecific adults more than far from them. Whilst this is thought to facilitate species coexistence, the relative contribution of multiple enemies to whether heterospecific seeds and seedlings rather than conspecifics perform better beneath a particular adult species remains less clear, especially in regions with spatially extensive monodominant stands. We designed a field exclusion experiment to separate the effects of fungi, insects and vertebrates on the seedling establishment and early survival of two temperate tree species, Fagus sylvatica and Picea abies, in the adult tree monocultures of these species. Our experiment demonstrates the key role of vertebrates in mediating the effects of adult trees on seeds and seedlings. Due to vertebrates and partly insects, Fagus sylvatica seedlings survived worse beneath conspecific than heterospecific adults and were also outperformed by Picea abies seedlings beneath their own adults. Picea abies seedling establishment was higher beneath conspecific than heterospecific adults, but Fagus sylvatica seedlings outperformed them beneath their own adults. The impact of enemies on Picea abies establishment beneath conspecific adults was less clear. Fungi did not influence seedling establishment and survival. Our findings highlight the need to compare enemy impacts on each seedling species beneath conspecific and heterospecific adults with their impacts on conspecific and heterospecific seedlings beneath a particular adult species. Such evaluations can shed more light on the role of enemies in tree communities by identifying the plant-enemy interactions that facilitate species coexistence and those that promote species monodominance.
- Keywords
- Monodominance, Natural enemies, Plant–enemy interactions, Seedling establishment, Seedling survival, Species coexistence,
- MeSH
- Insecta MeSH
- Fungi MeSH
- Vertebrates MeSH
- Predatory Behavior MeSH
- Seeds MeSH
- Seedlings * MeSH
- Trees * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Tropical plants are expected to have a higher variety of defensive traits, such as a more diverse array of secondary metabolic compounds in response to greater pressures of antagonistic interactions, than their temperate counterparts. We test this hypothesis using advanced metabolomics linked to a novel stoichiometric compound classification to analyze the complete foliar metabolomes of four tropical and four temperate tree species, which were selected so that each subset contained the same amount of phylogenetic diversity and evenness. We then built Bayesian phylogenetic multilevel models to test for tropical-temperate differences in metabolite diversity for the entire metabolome and for four major families of secondary compounds. We found strong evidence supporting that the leaves of tropical tree species have a higher phenolic diversity. The functionally closer group of polyphenolics also showed moderate evidence of higher diversity in tropical species, but there were no differences either for the entire metabolome or for the other major families of compounds analyzed. This supports the interpretation that this tropical-temperate contrast must be related to the functional role of phenolics and polyphenolics.
- Keywords
- antagonistic interactions, bayesian phylogenetic models, latitudinal biodiversity gradient, metabolomics, phenolics, plant defense,
- Publication type
- Journal Article MeSH