Nejvíce citovaný článek - PubMed ID 25609617
Evidence for consolidation of neuronal assemblies after seizures in humans
Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures that often originate within limbic networks involving amygdala and hippocampus. The limbic network is involved in crucial physiologic functions involving memory, emotion and sleep. Temporal lobe epilepsy is frequently drug-resistant, and people often experience comorbidities related to memory, mood and sleep. Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is an established therapy for temporal lobe epilepsy. However, the optimal stimulation parameters and their impact on memory, mood and sleep comorbidities remain unclear. We used an investigational brain sensing-stimulation implanted device to accurately track seizures, interictal epileptiform spikes (IES), and memory, mood and sleep comorbidities in five ambulatory subjects. Wireless streaming of limbic network local field potentials (LFPs) and subject behaviour were captured on a mobile device integrated with a cloud environment. Automated algorithms applied to the continuous LFPs were used to accurately cataloged seizures, IES and sleep-wake brain state. Memory and mood assessments were remotely administered to densely sample cognitive and behavioural response during ANT-DBS in ambulatory subjects living in their natural home environment. We evaluated the effect of continuous low-frequency and duty cycle high-frequency ANT-DBS on epileptiform activity and memory, mood and sleep comorbidities. Both low-frequency and high-frequency ANT-DBS paradigms reduced seizures. However, continuous low-frequency ANT-DBS showed greater reductions in IES, electrographic seizures and better sleep and memory outcomes. These results highlight the potential of synchronized brain sensing and dense behavioural tracking during ANT-DBS for optimizing neuromodulation therapy. While studies with larger patient numbers are needed to validate the benefits of low-frequency ANT-DBS, these findings are potentially translatable to individuals currently implanted with ANT-DBS systems.
- Klíčová slova
- artificial intelligence and machine learning, electrical brain stimulation, epilepsy comorbidities, intracranial EEG,
- Publikační typ
- časopisecké články MeSH
Despite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected in the human mesial temporal lobe and neocortical intracranial recordings spanning gamma/epsilon (60-150 Hz), ripple (80-250 Hz) and higher frequency ranges. Separate from other non-oscillatory activities, these brief electrophysiological oscillations of distinct duration, frequency and amplitude are thought to be generated by coordinated spiking of neuronal ensembles within volumes as small as a single cortical column. Although the exact origins, mechanisms and physiological roles in health and disease remain elusive, they have been associated with human memory consolidation and cognitive processing. Recent studies suggest their involvement in encoding and recall of episodic memory with a possible role in the formation and reactivation of memory traces. High frequency oscillations are detected during encoding, throughout maintenance, and right before recall of remembered items, meeting a basic definition for an engram activity. The temporal coordination of high frequency oscillations reactivated across cortical and subcortical neural networks is ideally suited for integrating multimodal memory representations, which can be replayed and consolidated during states of wakefulness and sleep. High frequency oscillations have been shown to reflect coordinated bursts of neuronal assembly firing and offer a promising substrate for tracking and modulation of the hypothetical electrophysiological engram.
- Klíčová slova
- cognition, intracranial EEG, local field potential, memory consolidation, network oscillations, sharp-wave ripples,
- MeSH
- elektroencefalografie MeSH
- kognice * fyziologie MeSH
- lidé MeSH
- mozek fyziologie MeSH
- mozkové vlny fyziologie MeSH
- paměť fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The network nature of focal epilepsy is exemplified by mesial temporal lobe epilepsy (mTLE), characterized by focal seizures originating from the mesial temporal neocortex, amygdala, and hippocampus. The mTLE network hypothesis is evident in seizure semiology and interictal comorbidities, both reflecting limbic network dysfunction. The network generating seizures also supports essential physiological functions, including memory, emotion, mood, and sleep. Pathology in the mTLE network often manifests as interictal behavioral disturbances and seizures. The limbic circuit is a vital network, and here we review one of the most common focal epilepsies and its comorbidities. We describe two people with drug resistant mTLE implanted with an investigational device enabling continuous hippocampal local field potential sensing and anterior nucleus of thalamus deep brain stimulation (ANT-DBS) who experienced reversible psychosis during continuous high-frequency stimulation. The mechanism(s) of psychosis remain poorly understood and here we speculate that the anti-epileptic effect of high frequency ANT-DBS may provide insights into the physiology of primary disorders associated with psychosis.
- Klíčová slova
- ANT-DBS, Epilepsy, limbic network, psychosis, seizure,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Low frequency brain rhythms facilitate communication across large spatial regions in the brain and high frequency rhythms are thought to signify local processing among nearby assemblies. A heavily investigated mode by which these low frequency and high frequency phenomenon interact is phase-amplitude coupling (PAC). This phenomenon has recently shown promise as a novel electrophysiologic biomarker, in a number of neurologic diseases including human epilepsy. In 17 medically refractory epilepsy patients undergoing phase-2 monitoring for the evaluation of surgical resection and in whom temporal depth electrodes were implanted, we investigated the electrophysiologic relationships of PAC in epileptogenic (seizure onset zone or SOZ) and non-epileptogenic tissue (non-SOZ). That this biomarker can differentiate seizure onset zone from non-seizure onset zone has been established with ictal and pre-ictal data, but less so with interictal data. Here we show that this biomarker can differentiate SOZ from non-SOZ interictally and is also a function of interictal epileptiform discharges. We also show a differential level of PAC in slow-wave-sleep relative to NREM1-2 and awake states. Lastly, we show AUROC evaluation of the localization of SOZ is optimal when utilizing beta or alpha phase onto high-gamma or ripple band. The results suggest an elevated PAC may reflect an electrophysiology-based biomarker for abnormal/epileptogenic brain regions.
- Klíčová slova
- behavioral staging, epilepsy, phase-amplitude coupling (PAC),
- Publikační typ
- časopisecké články MeSH
Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distributed computing resources. Automated analysis of continuous streaming electrophysiology is synchronized with patient reports using a handheld device and integrated with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes and patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for interictal epileptiform spikes and seizures were developed and parameterized using long-term ambulatory data from nine humans and eight canines with epilepsy, and then implemented prospectively in out-of-sample testing in two pet canines and four humans with drug-resistant epilepsy living in their natural environments. Accurate seizure diaries are needed as the primary clinical outcome measure of epilepsy therapy and to guide brain-stimulation optimization. The brain co-processor system described here enables tracking interictal epileptiform spikes, seizures and correlation with patient behavioural reports. In the future, correlation of spikes and seizures with behaviour will allow more detailed investigation of the clinical impact of spikes and seizures on patients.
- Klíčová slova
- electrophysiology, epilepsy, machine learning, seizures,
- Publikační typ
- časopisecké články MeSH
Objective.Electrical deep brain stimulation (DBS) is an established treatment for patients with drug-resistant epilepsy. Sleep disorders are common in people with epilepsy, and DBS may actually further disturb normal sleep patterns and sleep quality. Novel implantable devices capable of DBS and streaming of continuous intracranial electroencephalography (iEEG) signals enable detailed assessments of therapy efficacy and tracking of sleep related comorbidities. Here, we investigate the feasibility of automated sleep classification using continuous iEEG data recorded from Papez's circuit in four patients with drug resistant mesial temporal lobe epilepsy using an investigational implantable sensing and stimulation device with electrodes implanted in bilateral hippocampus (HPC) and anterior nucleus of thalamus (ANT).Approach.The iEEG recorded from HPC is used to classify sleep during concurrent DBS targeting ANT. Simultaneous polysomnography (PSG) and sensing from HPC were used to train, validate and test an automated classifier for a range of ANT DBS frequencies: no stimulation, 2 Hz, 7 Hz, and high frequency (>100 Hz).Main results.We show that it is possible to build a patient specific automated sleep staging classifier using power in band features extracted from one HPC iEEG sensing channel. The patient specific classifiers performed well under all thalamic DBS frequencies with an average F1-score 0.894, and provided viable classification into awake and major sleep categories, rapid eye movement (REM) and non-REM. We retrospectively analyzed classification performance with gold-standard PSG annotations, and then prospectively deployed the classifier on chronic continuous iEEG data spanning multiple months to characterize sleep patterns in ambulatory patients living in their home environment.Significance.The ability to continuously track behavioral state and fully characterize sleep should prove useful for optimizing DBS for epilepsy and associated sleep, cognitive and mood comorbidities.
- Klíčová slova
- ambulatory intracranial EEG, automated sleep scoring, deep brain stimulation, electrical brain stimulation, epilepsy, implantable devices,
- MeSH
- epilepsie komplikace MeSH
- hipokampus MeSH
- hluboká mozková stimulace * metody MeSH
- lidé MeSH
- mozek MeSH
- nuclei anteriores thalami * MeSH
- poruchy spánku a bdění * komplikace diagnóza terapie MeSH
- retrospektivní studie MeSH
- thalamus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Epilepsy is one of the most common neurological disorders, and it affects almost 1% of the population worldwide. Many people living with epilepsy continue to have seizures despite anti-epileptic medication therapy, surgical treatments, and neuromodulation therapy. The unpredictability of seizures is one of the most disabling aspects of epilepsy. Furthermore, epilepsy is associated with sleep, cognitive, and psychiatric comorbidities, which significantly impact the quality of life. Seizure predictions could potentially be used to adjust neuromodulation therapy to prevent the onset of a seizure and empower patients to avoid sensitive activities during high-risk periods. Long-term objective data is needed to provide a clearer view of brain electrical activity and an objective measure of the efficacy of therapeutic measures for optimal epilepsy care. While neuromodulation devices offer the potential for acquiring long-term data, available devices provide very little information regarding brain activity and therapy effectiveness. Also, seizure diaries kept by patients or caregivers are subjective and have been shown to be unreliable, in particular for patients with memory-impairing seizures. This paper describes the design, architecture, and development of the Mayo Epilepsy Personal Assistant Device (EPAD). The EPAD has bi-directional connectivity to the implanted investigational Medtronic Summit RC+STM device to implement intracranial EEG and physiological monitoring, processing, and control of the overall system and wearable devices streaming physiological time-series signals. In order to mitigate risk and comply with regulatory requirements, we developed a Quality Management System (QMS) to define the development process of the EPAD system, including Risk Analysis, Verification, Validation, and protocol mitigations. Extensive verification and validation testing were performed on thirteen canines and benchtop systems. The system is now under a first-in-human trial as part of the US FDA Investigational Device Exemption given in 2018 to study modulated responsive and predictive stimulation using the Mayo EPAD system and investigational Medtronic Summit RC+STM in ten patients with non-resectable dominant or bilateral mesial temporal lobe epilepsy. The EPAD system coupled with an implanted device capable of EEG telemetry represents a next-generation solution to optimizing neuromodulation therapy.
- Klíčová slova
- deep brain stimulation, epilepsy, implantable devices, neuromodulation, seizure detection, seizure prediction, wearables,
- Publikační typ
- časopisecké články MeSH
Debates on six controversial topics on the network theory of epilepsy were held during two debate sessions, as part of the International Conference for Technology and Analysis of Seizures, 2019 (ICTALS 2019) convened at the University of Exeter, UK, September 2-5 2019. The debate topics were (1) From pathologic to physiologic: is the epileptic network part of an existing large-scale brain network? (2) Are micro scale recordings pertinent for defining the epileptic network? (3) From seconds to years: do we need all temporal scales to define an epileptic network? (4) Is it necessary to fully define the epileptic network to control it? (5) Is controlling seizures sufficient to control the epileptic network? (6) Does the epileptic network want to be controlled? This article, written by the organizing committee for the debate sessions and the debaters, summarizes the arguments presented during the debates on these six topics.
- Klíčová slova
- Edges, Epileptic network, Epileptogenesis, Ictogenesis, Nodes, Seizure control,
- MeSH
- epilepsie diagnóza farmakoterapie patofyziologie MeSH
- kongresy jako téma MeSH
- lidé MeSH
- nervová síť účinky léků patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Brain stimulation has emerged as an effective treatment for a wide range of neurological and psychiatric diseases. Parkinson's disease, epilepsy, and essential tremor have FDA indications for electrical brain stimulation using intracranially implanted electrodes. Interfacing implantable brain devices with local and cloud computing resources have the potential to improve electrical stimulation efficacy, disease tracking, and management. Epilepsy, in particular, is a neurological disease that might benefit from the integration of brain implants with off-the-body computing for tracking disease and therapy. Recent clinical trials have demonstrated seizure forecasting, seizure detection, and therapeutic electrical stimulation in patients with drug-resistant focal epilepsy. In this paper, we describe a next-generation epilepsy management system that integrates local handheld and cloud-computing resources wirelessly coupled to an implanted device with embedded payloads (sensors, intracranial EEG telemetry, electrical stimulation, classifiers, and control policy implementation). The handheld device and cloud computing resources can provide a seamless interface between patients and physicians, and realtime intracranial EEG can be used to classify brain state (wake/sleep, preseizure, and seizure), implement control policies for electrical stimulation, and track patient health. This system creates a flexible platform in which low demand analytics requiring fast response times are embedded in the implanted device and more complex algorithms are implemented in offthebody local and distributed cloud computing environments. The system enables tracking and management of epileptic neural networks operating over time scales ranging from milliseconds to months.
- Klíčová slova
- Epilepsy, deep brain stimulation, distributed computing, implantable devices, seizure detection, seizure prediction,
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. APPROACH: Data from seven patients (age [Formula: see text], 4 women) who underwent intracranial depth electrode implantation for iEEG monitoring were included. Spectral power features (0.1-600 Hz) spanning several frequency bands from a single electrode were used to train and test a support vector machine classifier. MAIN RESULTS: Classification accuracy of 97.8 ± 0.3% (normal tissue) and 89.4 ± 0.8% (epileptic tissue) across seven subjects using multiple spectral power features from a single electrode was achieved. Spectral power features from electrodes placed in normal temporal neocortex were found to be more useful (accuracy 90.8 ± 0.8%) for sleep-wake state classification than electrodes located in normal hippocampus (87.1 ± 1.6%). Spectral power in high frequency band features (Ripple (80-250 Hz), Fast Ripple (250-600 Hz)) showed comparable performance for AW and SWS classification as the best performing Berger bands (Alpha, Beta, low Gamma) with accuracy ⩾90% using a single electrode contact and single spectral feature. SIGNIFICANCE: Automated classification of wake and SWS should prove useful for future implantable epilepsy devices with limited computational power, memory, and number of electrodes. Applications include quantifying patient sleep patterns and behavioral state dependent detection, prediction, and electrical stimulation therapies.
- MeSH
- algoritmy * MeSH
- diagnóza počítačová metody MeSH
- dospělí MeSH
- elektrokortikografie metody MeSH
- epilepsie diagnóza patofyziologie MeSH
- hipokampus patofyziologie MeSH
- lidé MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání automatizované metody MeSH
- senzitivita a specificita MeSH
- stadia spánku * MeSH
- strojové učení MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH