Nejvíce citovaný článek - PubMed ID 25687974
A refined atomic scale model of the Saccharomyces cerevisiae K+-translocation protein Trk1p combined with experimental evidence confirms the role of selectivity filter glycines and other key residues
The non-conventional yeast Kluyveromyces marxianus has recently emerged as a promising candidate for many food, environment, and biotechnology applications. This yeast is thermotolerant and has robust growth under many adverse conditions. Here, we show that its ability to grow under potassium-limiting conditions is much better than that of Saccharomyces cerevisiae, suggesting a very efficient and high-affinity potassium uptake system(s) in this species. The K. marxianus genome contains two genes for putative potassium transporters: KmHAK1 and KmTRK1. To characterize the products of the two genes, we constructed single and double knock-out mutants in K. marxianus and also expressed both genes in an S. cerevisiae mutant, that lacks potassium importers. Our results in K. marxianus and S. cerevisiae revealed that both genes encode efficient high-affinity potassium transporters, contributing to potassium homeostasis and maintaining plasma-membrane potential and cytosolic pH. In K. marxianus, the presence of HAK1 supports growth at low K+ much better than that of TRK1, probably because the substrate affinity of KmHak1 is about 10-fold higher than that of KmTrk1, and its expression is induced ~80-fold upon potassium starvation. KmHak1 is crucial for salt stress survival in both K. marxianus and S. cerevisiae. In co-expression experiments with ScTrk1 and ScTrk2, its robustness contributes to an increased tolerance of S. cerevisiae cells to sodium and lithium salt stress.
- Klíčová slova
- Kluyveromyces marxianu, K+–H+ symporter, affinity, potassium, transporter, uniporter,
- MeSH
- draslík * metabolismus MeSH
- fungální proteiny genetika metabolismus MeSH
- genový knockout MeSH
- Kluyveromyces * genetika metabolismus růst a vývoj MeSH
- koncentrace vodíkových iontů MeSH
- membránové potenciály MeSH
- proteiny přenášející kationty * genetika metabolismus MeSH
- regulace genové exprese u hub MeSH
- Saccharomyces cerevisiae * genetika metabolismus růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- draslík * MeSH
- fungální proteiny MeSH
- proteiny přenášející kationty * MeSH
Potassium is an essential intracellular ion, and a sufficient intracellular concentration of it is crucial for many processes; therefore it is fundamental for cells to precisely regulate K+ uptake and efflux through the plasma membrane. The uniporter Trk1 is a key player in K+ acquisition in yeasts. The TRK1 gene is expressed at a low and stable level; thus the activity of the transporter needs to be regulated at a posttranslational level. S. cerevisiae Trk1 changes its activity and affinity for potassium ion quickly and according to both internal and external concentrations of K+, as well as the membrane potential. The molecular basis of these changes has not been elucidated, though phosphorylation is thought to play an important role. In this study, we examined the role of the second, short, and highly conserved intracellular hydrophilic loop of Trk1 (IL2), and identified two phosphorylable residues (Ser882 and Thr900) as very important for 1) the structure of the loop and consequently for the targeting of Trk1 to the plasma membrane, and 2) the upregulation of the transporter's activity reaching maximal affinity under low external K+ conditions. Moreover, we identified three residues (Thr155, Ser414, and Thr900) within the Trk1 protein as strong candidates for interaction with 14-3-3 regulatory proteins, and showed, in an in vitro experiment, that phosphorylated Thr900 of the IL2 indeed binds to both isoforms of yeast 14-3-3 proteins, Bmh1 and Bmh2.
- Klíčová slova
- 14–3–3 proteins, Phosphorylation, Potassium ion uptake, Saccharomyces cerevisiae, Trk1,
- Publikační typ
- časopisecké články MeSH
In baker's yeast (Saccharomyces cerevisiae), Trk1, a member of the superfamily of K-transporters (SKT), is the main K+ uptake system under conditions when its concentration in the environment is low. Structurally, Trk1 is made up of four domains, each similar and homologous to a K-channel α subunit. Because most K-channels are proteins containing four channel-building α subunits, Trk1 could be functional as a monomer. However, related SKT proteins TrkH and KtrB were crystallised as dimers, and for Trk1, a tetrameric arrangement has been proposed based on molecular modelling. Here, based on Bimolecular Fluorescence Complementation experiments and single-molecule fluorescence microscopy combined with molecular modelling; we provide evidence that Trk1 can exist in the yeast plasma membrane as a monomer as well as a dimer. The association of monomers to dimers is regulated by the K+ concentration.
- Klíčová slova
- K+ translocation, MD simulation, Saccharomyces cerevisiae, bimolecular fluorescence complementation, dimerisation, molecular modelling,
- MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- draslík metabolismus MeSH
- fungální proteiny metabolismus MeSH
- proteiny přenášející kationty * genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny * genetika metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- translokace genetická MeSH
- transportní proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- draslík MeSH
- fungální proteiny MeSH
- proteiny přenášející kationty * MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
- transportní proteiny MeSH
- TRK1 protein, S cerevisiae MeSH Prohlížeč
Yeasts need a high intracellular concentration of potassium to grow. The main K+ uptake system in Saccharomyces cerevisiae is the Trk1 transporter, a complex protein with four MPM helical membrane motifs. Trk1 has been shown to exist in low- or high-affinity modes, which reflect the availability of potassium in the environment. However, when and how the affinity changes, and whether the potassium availability is the only signal for the affinity switch, remains unknown. Here, we characterize the Trk1 kinetic parameters under various conditions and find that Trk1's KT and Vmax change gradually. This gliding adjustment is rapid and precisely reflects the changes in the intracellular potassium content and membrane potential. A detailed characterization of the specific mutations in the P-helices of the MPM segments reveals that the presence of proline in the P-helix of the second and third MPM domain (F820P and L949P) does not affect the function of Trk1 in general, but rather specifically prevents the transporter's transition to a high-affinity state. The analogous mutations in the two remaining MPM domains (L81P and L1115P) result in a mislocalized and inactive protein, highlighting the importance of the first and fourth P-helices in proper Trk1 folding and activity at the plasma membrane.
- Klíčová slova
- Saccharomyces cerevisiae, cation homeostasis, membrane potential, potassium uptake,
- Publikační typ
- časopisecké články MeSH
Photosystem II (PSII) is a multi-subunit pigment-protein complex and is one of several protein assemblies that function cooperatively in photosynthesis in plants and cyanobacteria. As more structural data on PSII become available, new questions arise concerning the nature of the charge separation in PSII reaction center (RC). The crystal structure of PSII RC from cyanobacteria Thermosynechococcus vulcanus was selected for the computational study of conformational changes in photosystem II associated to the charge separation process. The parameterization of cofactors and lipids for classical MD simulation with Amber force field was performed. The parametrized complex of PSII was embedded in the lipid membrane for MD simulation with Amber in Gromacs. The conformational behavior of protein and the cofactors directly involved in the charge separation were studied by MD simulations and QM/MM calculations. This study identified the most likely mechanism of the proton-coupled reduction of plastoquinone QB. After the charge separation and the first electron transfer to QB, the system undergoes conformational change allowing the first proton transfer to QB- mediated via Ser264. After the second electron transfer to QBH, the system again adopts conformation allowing the second proton transfer to QBH-. The reduced QBH2 would then leave the binding pocket.
- Klíčová slova
- MD simulations, Photosystem II reaction center, Plastoquinone, Proton-coupled reduction,
- MeSH
- bakteriální proteiny chemie MeSH
- fotosystém II (proteinový komplex) chemie MeSH
- lipidové dvojvrstvy chemie MeSH
- simulace molekulární dynamiky * MeSH
- sinice enzymologie MeSH
- Thermosynechococcus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fotosystém II (proteinový komplex) MeSH
- lipidové dvojvrstvy MeSH
Candida glabrata is a haploid yeast that is considered to be an emergent pathogen since it is the second most prevalent cause of candidiasis. Contrary to most yeasts, this species carries only one plasma membrane potassium transporter named CgTrk1. We show in this work that the activity of this transporter is regulated at the posttranslational level, and thus Trk1 contributes to potassium uptake under very different external cation concentrations. In addition to its function in potassium uptake, we report a diversity of physiological effects related to this transporter. CgTRK1 contributes to proper cell size, intracellular pH and membrane-potential homeostasis when expressed in Saccharomyces cerevisiae. Moreover, lithium influx experiments performed both in C. glabrata and S. cerevisiae indicate that the salt tolerance phenotype linked to CgTrk1 can be related to a high capacity to discriminate between potassium and lithium (or sodium) during the transport process. In summary, we show that CgTRK1 exerts a diversity of pleiotropic physiological roles and we propose that the corresponding protein may be an attractive pharmacological target for the development of new antifungal drugs.
- Klíčová slova
- Candida glabrata, Membrane potential, Potassium transport, Saccharomyces cerevisiae, Salt tolerance, Trk1,
- MeSH
- buněčná membrána metabolismus MeSH
- Candida glabrata genetika metabolismus MeSH
- draslík metabolismus MeSH
- fungální proteiny genetika metabolismus MeSH
- homeostáza MeSH
- koncentrace vodíkových iontů MeSH
- proteiny přenášející kationty genetika metabolismus MeSH
- regulace genové exprese u hub MeSH
- sodík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- draslík MeSH
- fungální proteiny MeSH
- proteiny přenášející kationty MeSH
- sodík MeSH