Most cited article - PubMed ID 25773369
Isolated heart models: cardiovascular system studies and technological advances
Cardiovascular diseases represent an economic burden for health systems accounting for substantial morbidity and mortality worldwide. Despite timely and costly efforts in drug development, the cardiovascular safety and efficacy of the drugs are not always fully achieved. These lead to the drugs' withdrawal with adverse cardiac effects from the market or in the late stages of drug development. There is a growing need for a cost-effective drug screening assay to rapidly detect potential acute drug cardiotoxicity. The Langendorff isolated heart perfusion technique, which provides cardiac hemodynamic parameters (e.g., contractile function and heart rate), has become a powerful approach in the early drug discovery phase to overcome drawbacks in the drug candidate's identification. However, traditional ex vivo retrograde heart perfusion methods consume a large volume of perfusate, which increases the cost and limits compound screening. An elegant and cost-effective alternative mode for ex vivo retrograde heart perfusion is the constant-flow with a recirculating circuit (CFCC), which allows assessment of cardiac function using a reduced perfusion volume while limiting adverse effects on the heart. Here, we provide evidence for cardiac parameters stability over time in this mode. Next, we demonstrate that our recycled ex vivo perfusion system and the traditional open one yield similar outputs on cardiac function under basal conditions and upon ?-adrenergic stimulation with isoproterenol. Subsequently, we validate the proof of concept of therapeutic agent screening using this efficient method. ?-blocker (i.e., propranolol) infusion in closed circulation countered the positive effects induced by isoproterenol stimulation on cardiac function. Keywords: Drug development, Drug screening, Cardiovascular safety, Langendorff method, Closed circulation.
- MeSH
- Isoproterenol pharmacology MeSH
- Rats MeSH
- Perfusion * methods MeSH
- Drug Evaluation, Preclinical methods MeSH
- Isolated Heart Preparation * methods MeSH
- Heart * drug effects physiology MeSH
- Heart Rate drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Isoproterenol MeSH
Atrioventricular (AV) accessory pathways (APs) provide additional electrical connections between the atria and ventricles, resulting in severe electrical disturbances. It is generally accepted that APs originate in the altered annulus fibrosus maturation in the late prenatal and perinatal period. However, current experimental methods cannot address their development in specific locations around the annulus fibrosus because of the inaccessibility of late fetal hearts for electrophysiological investigation under physiological conditions. In this study, we describe an approach for optical mapping of the retrogradely perfused chick heart in the last third of the incubation period. This system showed stability for electrophysiological measurement for several hours. This feature allowed analysis of the number and functionality of the APs separately in each clinically relevant position. Under physiological conditions, we also recorded the shortening of the AV delay with annulus fibrosus maturation and analyzed ventricular activation patterns after conduction through APs at specific locations. We observed a gradual regression of AP with an area-specific rate (left-sided APs disappeared first). The results also revealed a sudden drop in the number of active APs between embryonic days 16 and 18. Accessory myocardial AV connections were histologically documented in all positions around the annulus fibrosus even after hatching. The fact that no electrically active AP was present at this stage highlights the necessity of electrophysiological evaluation of accessory atrioventricular connections in studying AP formation.NEW & NOTEWORTHY We present the use of retrograde perfusion and optical mapping to investigate, for the first time, the regression of accessory pathways during annulus fibrosus maturation, separately examining each clinically relevant location. The system enables measurements under physiological conditions and demonstrates long-lasting stability compared with other approaches. This study offers applications of the model to investigate electrical and/or functional development in late embryonic development without concern about heart viability.
- Keywords
- Langendorff perfusion, atrioventricular accessory pathway, preexcitation,
- MeSH
- Action Potentials * MeSH
- Chick Embryo MeSH
- Atrioventricular Node embryology physiopathology MeSH
- Perfusion MeSH
- Animals MeSH
- Check Tag
- Chick Embryo MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Cardiovascular system and its functions under both physiological and pathophysiological conditions have been studied for centuries. One of the most important steps in the cardiovascular research was the possibility to record cardiac electrical activity. Since then, numerous modifications and improvements have been introduced; however, an electrocardiogram still represents a golden standard in this field. This paper overviews possibilities of ECG recordings in research and clinical practice, deals with advantages and disadvantages of various approaches, and summarizes possibilities of advanced data analysis. Special emphasis is given to state-of-the-art deep learning techniques intensely expanded in a wide range of clinical applications and offering promising prospects in experimental branches. Since, according to the World Health Organization, cardiovascular diseases are the main cause of death worldwide, studying electrical activity of the heart is still of high importance for both experimental and clinical cardiology.
- Keywords
- ECG analysis, ECG recording, animal model, arrhythmia classification, artificial intelligence, deep learning, electrocardiogram, isolated heart,
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Detailed quantitative analysis of the effect of left ventricle (LV) hypertrophy on myocardial ischemia manifestation in ECG is still missing. The associations between both phenomena can be studied in animal models. In this study, rabbit isolated hearts with spontaneously increased LV mass were used to evaluate the effect of such LV alteration on ischemia detection criteria and performance. METHODS: Electrophysiological effects of increased LV mass were evaluated on sixteen New Zealand rabbit isolated hearts under non-ischemic and ischemic conditions by analysis of various electrogram (EG) parameters. To reveal hearts with increased LV mass, LV weight/heart weight ratio was proposed. Standard paired and unpaired statistical tests and receiver operating characteristics analysis were used to compare data derived from different groups of animals, monitor EG parameters during global ischemia and evaluate their ability to discriminate between unchanged and increased LV as well as non-ischemic and ischemic state. RESULTS: Successful evaluation of both increased LV mass and ischemia is lead-dependent. Particularly, maximal deviation of QRS and area under QRS associated with anterolateral heart wall respond significantly to even early phase (the 1st-3rd min) of ischemia. Besides ischemia, these parameters reflect increased LV mass as well (with sensitivity reaching approx. 80%). However, the sensitivity of the parameters to both phenomena may lead to misinterpretations, when inappropriate criteria for ischemia detection are selected. Particularly, use of cut-off-based criteria defined from control group for ischemia detection in hearts with increased LV mass may result in dramatic reduction (approx. 15%) of detection specificity due to increased number of false positives. Nevertheless, criteria adjusted to particular experimental group allow achieving ischemia detection sensitivity of 89-100% and specificity of 94-100%, respectively. CONCLUSIONS: It was shown that response of the heart to myocardial ischemia can be successfully evaluated only when taking into account heart-related factors (such as LV mass) and other methodological aspects (such as recording electrodes position, selected EG parameters, cut-off criteria, etc.). Results of this study might be helpful for developing new clinical diagnostic strategies in order to improve myocardial ischemia detection in patients with LV hypertrophy.
- Keywords
- Electrogram, Increased left ventricular mass, Isolated heart, Myocardial ischemia detection, ROC analysis, Rabbit,
- MeSH
- Electrophysiologic Techniques, Cardiac * MeSH
- Electrocardiography * MeSH
- Ventricular Function, Left * MeSH
- Hypertrophy, Left Ventricular complications diagnosis physiopathology MeSH
- Myocardial Ischemia complications diagnosis physiopathology MeSH
- Rabbits MeSH
- Disease Models, Animal MeSH
- Area Under Curve MeSH
- Signal Processing, Computer-Assisted MeSH
- Predictive Value of Tests MeSH
- Isolated Heart Preparation MeSH
- Ventricular Remodeling * MeSH
- Risk Factors MeSH
- ROC Curve MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH