Most cited article - PubMed ID 25957318
Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample
High-throughput sequencing (HTS) is increasingly being used for the characterization and monitoring of biodiversity. If applied in a structured way, across broad geographical scales, it offers the potential for a much deeper understanding of global biodiversity through the integration of massive quantities of molecular inventory data generated independently at local, regional and global scales. The universality, reliability and efficiency of HTS data can potentially facilitate the seamless linking of data among species assemblages from different sites, at different hierarchical levels of diversity, for any taxonomic group and regardless of prior taxonomic knowledge. However, collective international efforts are required to optimally exploit the potential of site-based HTS data for global integration and synthesis, efforts that at present are limited to the microbial domain. To contribute to the development of an analogous strategy for the nonmicrobial terrestrial domain, an international symposium entitled "Next Generation Biodiversity Monitoring" was held in November 2019 in Nicosia (Cyprus). The symposium brought together evolutionary geneticists, ecologists and biodiversity scientists involved in diverse regional and global initiatives using HTS as a core tool for biodiversity assessment. In this review, we summarize the consensus that emerged from the 3-day symposium. We converged on the opinion that an effective terrestrial Genomic Observatories network for global biodiversity integration and synthesis should be spatially led and strategically united under the umbrella of the metabarcoding approach. Subsequently, we outline an HTS-based strategy to collectively build an integrative framework for site-based biodiversity data generation.
- Keywords
- DNA metabarcoding, Genomic Observatories, biodiversity assessment, harmonized data generation, high-throughput sequencing,
- MeSH
- Biodiversity * MeSH
- Genomics MeSH
- Reproducibility of Results MeSH
- DNA Barcoding, Taxonomic * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Geographicals
- Cyprus MeSH
High-throughput DNA methods hold great promise for the study of the hyperdiverse arthropod fauna of the soil. We used the mitochondrial metagenomic approach to generate 39 mitochondrial genomes from adult and larval specimens of Coleoptera collected from soil samples. The mitogenomes correspond to species from the families Carabidae (6), Chrysomelidae (1), Curculionidae (9), Dermestidae (1), Elateridae (1), Latridiidae (1), Scarabaeidae (3), Silvanidae (1), Staphylinidae (12), and Tenebrionidae (4). All the mitogenomes followed the putative ancestral gene order for Coleoptera. We provide the first available mitogenome for 30 genera of Coleoptera, including endogean representatives of the genera Torneuma, Coiffaitiella, Otiorhynchus, Oligotyphlopsis, and Typhlocharis.
- Keywords
- Coleoptera, endogean, mitochondrial metagenomics, next-generation sequencing, soil,
- Publication type
- Journal Article MeSH
Massively parallel DNA sequencing opens up opportunities for bridging multiple temporal and spatial dimensions in biodiversity research, thanks to its efficiency to recover millions of nucleotide polymorphisms. Here, we identify the current status, discuss the main challenges, and look into future perspectives on biodiversity genomics focusing on insects, which arguably constitute the most diverse and ecologically important group among all animals. We suggest 10 simple rules that provide a succinct step-by-step guide and best-practices to anyone interested in biodiversity research through the study of insect genomics. To this end, we review relevant literature on biodiversity and evolutionary research in the field of entomology. Our compilation is targeted at researchers and students who may not yet be specialists in entomology or molecular biology. We foresee that the genomic revolution and its application to the study of non-model insect lineages will represent a major leap to our understanding of insect diversity.
- Keywords
- Evolution, High-throughput sequencing, Insect genomics, Museomics, Taxonomic impediment,
- Publication type
- Journal Article MeSH
BACKGROUND: Rhinorhipidae Lawrence, 1988 is an enigmatic beetle family represented by a single species, Rhinorhipus tamborinensis Lawrence, 1988, from Australia, with poorly established affinities near the superfamily Elateroidea (click beetles, soldier beetles and fireflies) or the more inclusive series (infraorder) Elateriformia. Its evolutionary position may inform the basal relationships of the suborder Polyphaga, the largest clade of Coleoptera. RESULTS: We analyzed four densely sampled DNA datasets of major coleopteran lineages for mitogenomes, rRNA genes and single copy nuclear genes. Additionally, genome sequencing was used for incorporation of R. tamborinensis into a set of 4220 orthologs for 24 terminals representing 12 polyphagan superfamilies. Topologies differed to various degrees, but all consistently refute the proposed placement of Rhinorhipidae in Elateroidea and instead indicate either sister relationships with other Elateriformia, frequently together with Nosodendridae, another divergent small family hitherto placed in Derodontoidea, or in an isolated position among the deepest lineages of Polyphaga. The phylogenomic analyses recovered Rhinorhipus in a sister position to all other Elateriformia composed of five superfamilies. Therefore, we erect the new superfamily Rhinorhipoidea Lawrence, 1988, stat. Nov., with the type-family Rhinorhipidae. The origins of the Rhinorhipidae were dated to the Upper Triassic/Lower Jurassic at the very early phase of polyphagan diversification. CONCLUSIONS: Thus, Rhinorhipidae adds another example to several recently recognized ancient relict lineages which are interspersed within contemporaneous hugely species-rich lineages of Coleoptera.
- Keywords
- Elateriformia, Molecular phylogeny, New superfamily, Phylotranscriptomics, Rhinorhipidae, Triassic,
- Publication type
- Journal Article MeSH
The ongoing exploration of biodiversity and the implementation of new molecular tools continue to unveil hitherto unknown lineages. Here, we report the discovery of three species of neotenic beetles for which we propose the new family Iberobaeniidae. Complete mitochondrial genomes and rRNA genes recovered Iberobaeniidae as a deep branch in Elateroidea, as sister to Lycidae (net-winged beetles). Two species of the new genus Iberobaenia, Iberobaenia minuta sp. nov. and Iberobaenia lencinai sp. nov. were found in the adult stage. In a separate incidence, a related sequence was identified in bulk samples of soil invertebrates subjected to shotgun sequencing and mitogenome assembly, which was traced to a larval voucher specimen of a third species of Iberobaenia Iberobaenia shows characters shared with other elateroid neotenic lineages, including soft-bodiedness, the hypognathous head, reduced mouthparts with reduced labial palpomeres, and extremely small-bodied males without strengthening structures due to miniaturization. Molecular dating shows that Iberobaeniidae represents an ancient relict lineage originating in the Lower Jurassic, which possibly indicates a long history of neoteny, usually considered to be evolutionarily short-lived. The apparent endemism of Iberobaeniidae in the Mediterranean region highlights the importance of this biodiversity hotspot and the need for further species exploration even in the well-studied European continent.
- Keywords
- biodiversity, endemism, mitogenomes, molecular phylogeny, neoteny, soil arthropods,
- MeSH
- Coleoptera anatomy & histology classification genetics physiology MeSH
- Phylogeny MeSH
- DNA, Mitochondrial MeSH
- Sequence Analysis, DNA methods MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Spain MeSH
- Names of Substances
- DNA, Mitochondrial MeSH